Microscopic relaxation channels in materials for superconducting qubits

被引:0
|
作者
Anjali Premkumar
Conan Weiland
Sooyeon Hwang
Berthold Jäck
Alexander P. M. Place
Iradwikanari Waluyo
Adrian Hunt
Valentina Bisogni
Jonathan Pelliciari
Andi Barbour
Mike S. Miller
Paola Russo
Fernando Camino
Kim Kisslinger
Xiao Tong
Mark S. Hybertsen
Andrew A. Houck
Ignace Jarrige
机构
[1] Princeton University,Department of Electrical Engineering
[2] National Institute of Standards and Technology,Material Measurement Laboratory
[3] Brookhaven National Laboratory,Center for Functional Nanomaterials
[4] Princeton University,Department of Physics
[5] Brookhaven National Laboratory,National Synchrotron Light Source II
[6] Angstrom Engineering Inc.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we combine measurements of transmon qubit relaxation times (T1) with spectroscopy and microscopy of the polycrystalline niobium films used in qubit fabrication. By comparing films deposited using three different techniques, we reveal correlations between T1 and intrinsic film properties such as grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Qubit and resonator measurements show signatures of two-level system defects, which we propose to be hosted in the grain boundaries and surface oxides. We also show that the residual resistance ratio of the polycrystalline niobium films can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
引用
收藏
相关论文
共 50 条
  • [11] DEMETRA: Suppression of the Relaxation Induced by Radioactivity in Superconducting Qubits
    Cardani, L.
    Casali, N.
    Catelani, G.
    Charpentier, T.
    Clemenza, M.
    Colantoni, I.
    Cruciani, A.
    Gironi, L.
    Gruenhaupt, L.
    Gusenkova, D.
    Henriques, F.
    Lagoin, M.
    Martinez, M.
    Pirro, S.
    Pop, I. M.
    Rusconi, C.
    Ustinov, A.
    Valenti, F.
    Vignati, M.
    Wernsdorfer, W.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (1-2) : 475 - 481
  • [12] Materials physics and quantum coherence in superconducting qubits
    Beasley, MR
    JOURNAL OF SUPERCONDUCTIVITY, 2004, 17 (05): : 663 - 667
  • [13] Materials Physics and Quantum Coherence in Superconducting Qubits
    M. R. Beasley
    Journal of Superconductivity, 2004, 17 : 663 - 667
  • [14] 2D materials shrink superconducting qubits
    Christian Schönenberger
    Nature Materials, 2022, 21 : 381 - 382
  • [15] 2D materials shrink superconducting qubits
    Schonenberger, Christian
    NATURE MATERIALS, 2022, 21 (04) : 381 - 382
  • [16] Superconducting charge qubits from a microscopic many-body perspective
    Rodrigues, D. A.
    Spiller, T. P.
    Annett, J. F.
    Gyorffy, B. L.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (43)
  • [17] Superconducting qubits
    Devoret, MH
    Martinis, JM
    QUANTUM ENTANGLEMENT AND INFORMATION PROCESSING, 2004, 79 : 443 - 485
  • [18] Materials And Processes For Superconducting Qubits And Superconducting Electronic Circuits On 300mm Wafers
    Rao, S. S. Papa
    Hobbs, C.
    Olson, S.
    Foroozani, N.
    Chong, H.
    Stamper, H.
    Martinick, B.
    Ashworth, D.
    Bunday, B.
    Malloy, M.
    Holland, E.
    Nalaskowski, J.
    Kearney, P.
    Ngai, T.
    Wells, I
    Yakimov, M.
    Oktyabrsky, S.
    O'Brien, B.
    Kaushik, V
    Dunn, K. A.
    Beckmann, K.
    Rodgers, M.
    Murray, T.
    Novak, S.
    Baker-O'Neal, B.
    Borst, C.
    Osborn, K. D.
    Liehr, M.
    SILICON COMPATIBLE MATERIALS, PROCESSES, AND TECHNOLOGIES FOR ADVANCED INTEGRATED CIRCUITS AND EMERGING APPLICATIONS 8, 2018, 85 (06): : 151 - 161
  • [19] Coupling mechanism between microscopic two-level system and superconducting qubits
    Zhang, Zhen-Tao
    Yu, Yang
    PHYSICAL REVIEW A, 2011, 84 (06):
  • [20] MICROSCOPIC THEORY OF RESISTIVE CURRENT STATES IN SUPERCONDUCTING CHANNELS
    GALAIKO, VP
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1975, 68 (01): : 223 - 237