Microscopic relaxation channels in materials for superconducting qubits

被引:0
|
作者
Anjali Premkumar
Conan Weiland
Sooyeon Hwang
Berthold Jäck
Alexander P. M. Place
Iradwikanari Waluyo
Adrian Hunt
Valentina Bisogni
Jonathan Pelliciari
Andi Barbour
Mike S. Miller
Paola Russo
Fernando Camino
Kim Kisslinger
Xiao Tong
Mark S. Hybertsen
Andrew A. Houck
Ignace Jarrige
机构
[1] Princeton University,Department of Electrical Engineering
[2] National Institute of Standards and Technology,Material Measurement Laboratory
[3] Brookhaven National Laboratory,Center for Functional Nanomaterials
[4] Princeton University,Department of Physics
[5] Brookhaven National Laboratory,National Synchrotron Light Source II
[6] Angstrom Engineering Inc.,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties and qubit coherence are poorly understood. Here, we combine measurements of transmon qubit relaxation times (T1) with spectroscopy and microscopy of the polycrystalline niobium films used in qubit fabrication. By comparing films deposited using three different techniques, we reveal correlations between T1 and intrinsic film properties such as grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Qubit and resonator measurements show signatures of two-level system defects, which we propose to be hosted in the grain boundaries and surface oxides. We also show that the residual resistance ratio of the polycrystalline niobium films can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.
引用
收藏
相关论文
共 50 条
  • [21] Increasing energy relaxation time of superconducting qubits with nonmagnetic infrared filter and shield
    刘宇浩
    李蒙蒙
    兰栋
    薛光明
    谭新生
    于海峰
    于扬
    Chinese Physics B, 2016, 25 (05) : 461 - 464
  • [22] Path toward manufacturable superconducting qubits with relaxation times exceeding 0.1 ms
    J. Verjauw
    R. Acharya
    J. Van Damme
    Ts. Ivanov
    D. Perez Lozano
    F. A. Mohiyaddin
    D. Wan
    J. Jussot
    A. M. Vadiraj
    M. Mongillo
    M. Heyns
    I. Radu
    B. Govoreanu
    A. Potočnik
    npj Quantum Information, 8
  • [23] Increasing energy relaxation time of superconducting qubits with nonmagnetic infrared filter and shield
    Liu, Yuhao
    Li, Mengmeng
    Lan, Dong
    Xue, Guangming
    Tan, Xinsheng
    Yu, Haifeng
    Yu, Yang
    CHINESE PHYSICS B, 2016, 25 (05)
  • [24] Path toward manufacturable superconducting qubits with relaxation times exceeding 0.1 ms
    Verjauw, J.
    Acharya, R.
    Van Damme, J.
    Ivanov, Ts
    Lozano, D. Perez
    Mohiyaddin, F. A.
    Wan, D.
    Jussot, J.
    Vadiraj, A. M.
    Mongillo, M.
    Heyns, M.
    Radu, I
    Govoreanu, B.
    Potocnik, A.
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [25] Superconducting phase qubits
    Martinis, John M.
    QUANTUM INFORMATION PROCESSING, 2009, 8 (2-3) : 81 - 103
  • [26] Superconducting metamaterials and qubits
    Plourde, B. L. T.
    Wang, Haozhi
    Rouxinol, Francisco
    LaHaye, M. D.
    QUANTUM INFORMATION AND COMPUTATION XIII, 2015, 9500
  • [27] Teleportation with superconducting qubits
    Soheila Salimian
    Mohammad Kazem Tavassoly
    Nayere Sehati
    The European Physical Journal D, 2020, 74
  • [28] Superconducting phase qubits
    John M. Martinis
    Quantum Information Processing, 2009, 8 : 81 - 103
  • [29] SQUEEZING OF SUPERCONDUCTING QUBITS
    Shiokawa, K.
    Nori, F.
    CONTROLLABLE QUANTUM STATES: MESOSCOPIC SUPERCONDUCTIVITY AND SPRINTRONICS, 2008, : 41 - 46
  • [30] Superconducting qubits in Russia
    Besedin, I. S.
    Fedorov, G. P.
    Dmitriev, A. Yu
    Ryazanov, V. V.
    QUANTUM ELECTRONICS, 2018, 48 (10) : 880 - 885