The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces

被引:0
|
作者
Cao Yonghui
Zhou Jiang
机构
[1] Xinjiang University,College of Mathematics and System Science
关键词
non-homogeneous metric measure spaces; Marcinkiewicz integral; commutator; Lebesgue space; 42B20; 42B35; 47B47; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{X},d,\mu)$\end{document} be a metric measure space satisfying the upper doubling condition and geometrically doubling condition in the sense of Hytönen. In this paper, the authors establish the boundedness of the commutator generated by the RBMO(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {RBMO}(\mu)$\end{document} function and the Marcinkiewicz integral with kernel satisfying a Hörmander-type condition, respectively, from Lp(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}(\mu)$\end{document} with 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< p<\infty$\end{document} to itself.
引用
收藏
相关论文
共 50 条
  • [31] Bilinear strongly generalized fractional integrals and their commutators over non-homogeneous metric spaces
    Lu, Guanghui
    Tao, Shuangping
    Wang, Miaomiao
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 193
  • [32] Boundedness of Calderon-Zygmund Operators on Non-homogeneous Metric Measure Spaces
    Hytonen, Tuomas
    Liu, Suile
    Yang, Dachun
    Yang, Dongyong
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (04): : 892 - 923
  • [33] BOUNDEDNESS OF COMMUTATORS RELATED TO MARCINKIEWICZ INTEGRALS ON HARDY TYPE SPACES
    Lu Shanzhen and Xu Lifang ( Beijing Normal University
    [J]. Analysis in Theory and Applications, 2004, (03) : 215 - 230
  • [34] Boundedness of Marcinkiewicz Integrals and Their Commutators on Generalized Weighted Morrey Spaces
    Cui, Runqing
    Li, Zhang
    [J]. JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [35] Commutators of Littlewood-Paley g*κ-functions on non-homogeneous metric measure spaces
    Lu, Guanghui
    Tao, Shuangping
    [J]. OPEN MATHEMATICS, 2017, 15 : 1283 - 1299
  • [36] Commutators of θ-type generalized fractional integrals on non-homogeneous spaces
    Lu, Guanghui
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [37] Commutators of θ-type generalized fractional integrals on non-homogeneous spaces
    Guanghui Lu
    [J]. Journal of Inequalities and Applications, 2020
  • [38] Boundedness of maximal Calderon-Zygmund operators on non-homogeneous metric measure spaces
    Liu, Suile
    Meng, Yan
    Yang, Dachun
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (03) : 567 - 589
  • [39] Weighted Morrey spaces on non-homogeneous metric measure spaces
    Yan, Yu
    Chen, Jie
    Lin, Haibo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 452 (01) : 335 - 350
  • [40] Boundedness of Littlewood-Paley g-functions on non-homogeneous metric measure spaces
    Jiao, Huaye
    Lin, Haibo
    [J]. NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 815 - 847