Commutators of Littlewood-Paley g*κ-functions on non-homogeneous metric measure spaces

被引:3
|
作者
Lu, Guanghui [1 ]
Tao, Shuangping [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
来源
OPEN MATHEMATICS | 2017年 / 15卷
基金
中国国家自然科学基金;
关键词
Non-homogeneous metric measure space; Commutators; g*(kappa)-functions; RBMO(mu); Hardy space; CALDERON-ZYGMUND OPERATORS; BMO; BOUNDEDNESS; INTEGRALS; THEOREM;
D O I
10.1515/math-2017-0110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to prove that the boundedness of the commutator M*(kappa,b) generated by the Littlewood-Paley operator M*(kappa) and RBMO(mu) function on non-homogeneous metric measure spaces satisfying the upper doubling and the geometrically doubling conditions. Under the assumption that the kernel of M*(kappa) satisfies a certain Hormander-type condition, the authors prove that M*(kappa,b) is bounded on Lebesgue spaces L-p(mu) for 1 < p < infinity, bounded from the space L log L(mu) to the weak Lebesgue spaceL(1,infinity)(mu), and is bounded from the atomic Hardy spaces H-1(mu) to the weak Lebesgue spaces L-1,L-infinity(mu).
引用
收藏
页码:1283 / 1299
页数:17
相关论文
共 50 条