Weighted Morrey spaces on non-homogeneous metric measure spaces

被引:15
|
作者
Yan, Yu [1 ]
Chen, Jie [1 ]
Lin, Haibo [1 ]
机构
[1] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Non-homogeneous metric measure space; Weighted Morrey space; Hardy-Littlewood maximal operator; Calderon-Zygmund type operator;
D O I
10.1016/j.jmaa.2017.03.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let (chi, d, mu) be a metric measure space satisfying the so-called upper doubling condition and the geometrically doubling condition. In this setting, the authors introduce the weighted Morrey space and the weighted weak Morrey space, and show several properties of these spaces. As applications, some weighted weak type estimates for the Hardy-Littlewood maximal operator and the Calderon-Zygmund type operator are established. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:335 / 350
页数:16
相关论文
共 50 条
  • [1] Spaces of type BLO on non-homogeneous metric measure
    Lin, Haibo
    Yang, Dachun
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (02) : 271 - 292
  • [2] Spaces of type BLO on non-homogeneous metric measure
    Haibo Lin
    Dachun Yang
    [J]. Frontiers of Mathematics in China, 2011, 6 : 271 - 292
  • [3] Hardy spaces Hp over non-homogeneous metric measure spaces and their applications
    Xing Fu
    HaiBo Lin
    DaChun Yang
    DongYong Yang
    [J]. Science China Mathematics, 2015, 58 : 309 - 388
  • [4] Maximal Multilinear Commutators on Non-homogeneous Metric Measure Spaces
    Chen, Jie
    Lin, Haibo
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (05): : 1133 - 1160
  • [5] Hardy spaces H~p over non-homogeneous metric measure spaces and their applications
    FU Xing
    LIN Hai Bo
    YANG Da Chun
    YANG Dong Yong
    [J]. Science China Mathematics, 2015, 58 (02) : 309 - 388
  • [6] Hardy spaces H p over non-homogeneous metric measure spaces and their applications
    Fu Xing
    Lin HaiBo
    Yang DaChun
    Yang DongYong
    [J]. SCIENCE CHINA-MATHEMATICS, 2015, 58 (02) : 309 - 388
  • [7] The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces
    Cao Yonghui
    Zhou Jiang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [8] The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces
    Cao Yonghui
    Zhou Jiang
    [J]. Journal of Inequalities and Applications, 2015
  • [9] Boundedness of certain commutators over non-homogeneous metric measure spaces
    Lin, Haibo
    Wu, Suqing
    Yang, Dachun
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (02) : 187 - 218
  • [10] Multilinear fractional integral operators on non-homogeneous metric measure spaces
    Huajun Gong
    Rulong Xie
    Chen Xu
    [J]. Journal of Inequalities and Applications, 2016