The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces

被引:0
|
作者
Cao Yonghui
Zhou Jiang
机构
[1] Xinjiang University,College of Mathematics and System Science
关键词
non-homogeneous metric measure spaces; Marcinkiewicz integral; commutator; Lebesgue space; 42B20; 42B35; 47B47; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
Let (X,d,μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathcal{X},d,\mu)$\end{document} be a metric measure space satisfying the upper doubling condition and geometrically doubling condition in the sense of Hytönen. In this paper, the authors establish the boundedness of the commutator generated by the RBMO(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\operatorname {RBMO}(\mu)$\end{document} function and the Marcinkiewicz integral with kernel satisfying a Hörmander-type condition, respectively, from Lp(μ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p}(\mu)$\end{document} with 1<p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< p<\infty$\end{document} to itself.
引用
收藏
相关论文
共 50 条
  • [1] The boundedness of Marcinkiewicz integrals commutators on non-homogeneous metric measure spaces
    Cao Yonghui
    Zhou Jiang
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [2] Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces
    LIN HaiBo
    YANG DaChun
    [J]. Science China Mathematics, 2014, 57 (01) : 123 - 144
  • [3] Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces
    Lin HaiBo
    Yang DaChun
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (01) : 123 - 144
  • [4] Equivalent boundedness of Marcinkiewicz integrals on non-homogeneous metric measure spaces
    HaiBo Lin
    DaChun Yang
    [J]. Science China Mathematics, 2014, 57 : 123 - 144
  • [5] BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ON HARDY SPACES Hp OVER NON-HOMOGENEOUS METRIC MEASURE SPACES
    Li, Haoyuan
    Lin, Haibo
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (02): : 347 - 364
  • [6] Boundedness of Commutators of Marcinkiewicz Integrals on Nonhomogeneous Metric Measure Spaces
    Lu, Guanghui
    Tao, Shuangping
    [J]. JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [7] Boundedness of certain commutators over non-homogeneous metric measure spaces
    Haibo Lin
    Suqing Wu
    Dachun Yang
    [J]. Analysis and Mathematical Physics, 2017, 7 : 187 - 218
  • [8] Boundedness of certain commutators over non-homogeneous metric measure spaces
    Lin, Haibo
    Wu, Suqing
    Yang, Dachun
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2017, 7 (02) : 187 - 218
  • [9] Fractional Type Marcinkiewicz Commutators Over Non-Homogeneous Metric Measure Spaces
    G. Lu
    S. Tao
    [J]. Analysis Mathematica, 2019, 45 : 87 - 110
  • [10] Fractional Type Marcinkiewicz Commutators Over Non-Homogeneous Metric Measure Spaces
    Lu, G.
    Tao, S.
    [J]. ANALYSIS MATHEMATICA, 2019, 45 (01) : 87 - 110