Information and Entropy in Quantum Brownian MotionThermodynamic Entropy versus von Neumann Entropy

被引:0
|
作者
Christian Hörhammer
Helmut Büttner
机构
[1] Universität Bayreuth,Theoretische Physik I
来源
Journal of Statistical Physics | 2008年 / 133卷
关键词
Quantum Brownian motion; Information; Entropy; Landauer principle;
D O I
暂无
中图分类号
学科分类号
摘要
We compare the thermodynamic entropy of a quantum Brownian oscillator derived from the partition function of the subsystem with the von Neumann entropy of its reduced density matrix. At low temperatures we find deviations between these two entropies which are due to the fact that the Brownian particle and its environment are entangled. We give an explanation for these findings and point out that these deviations become important in cases where statements about the information capacity of the subsystem are associated with thermodynamic properties, as it is the case for the Landauer principle.
引用
收藏
页码:1161 / 1174
页数:13
相关论文
共 50 条
  • [31] Von Neumann entropy in a dispersive cavity
    Deb, Ram Narayan
    JOURNAL OF MODERN OPTICS, 2021, 68 (19) : 1054 - 1058
  • [32] Perturbation theory of von Neumann entropy
    Chen Xiao-Yu
    CHINESE PHYSICS B, 2010, 19 (04)
  • [33] The von Neumann Entropy for Mixed States
    Anaya-Contreras, Jorge A.
    Moya-Cessa, Hector M.
    Zuniga-Segundo, Arturo
    ENTROPY, 2019, 21 (01):
  • [34] Perturbation theory of von Neumann entropy
    陈小余
    Chinese Physics B, 2010, (04) : 64 - 70
  • [35] Distinguishability of states and von Neumann entropy
    Jozsa, Richard
    Schlienz, Jürgen
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (01): : 012301 - 012301
  • [36] Distinguishability of states and von Neumann entropy
    Jozsa, R
    Schlienz, J
    PHYSICAL REVIEW A, 2000, 62 (01): : 11
  • [37] Skewness of von Neumann entanglement entropy
    Wei, Lu
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (07)
  • [38] Regularizing divergences in the von Neumann entropy
    Retamal, JC
    Vergara, L
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (02) : 866 - 871
  • [39] On the Equivalence of von Neumann and Thermodynamic Entropy
    Prunkl, Carina E. A.
    PHILOSOPHY OF SCIENCE, 2020, 87 (02) : 262 - 280
  • [40] Relative entropy for von Neumann subalgebras
    Gao, Li
    Junge, Marius
    LaRacuente, Nicholas
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (06)