Relative entropy for von Neumann subalgebras

被引:14
|
作者
Gao, Li [1 ]
Junge, Marius [2 ]
LaRacuente, Nicholas [3 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77840 USA
[2] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA
关键词
Relative entropy; von Neumann subalgebra; subfactor index; STRONG CONVERSE; INDEX;
D O I
10.1142/S0129167X20500469
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit the connection between index and relative entropy for an inclusion of finite von Neumann algebras. We observe that the Pimsner-Popa index connects to sandwiched p-Renyi relative entropy for all 1/2 <= p <= infinity, including Umegaki's relative entropy at p = 1. Rased on that, we introduce a new notation of relative entropy to a subalgebra which generalizes subfactors index. This relative entropy has application in estimating decoherence time of quantum Markov semigroups.
引用
收藏
页数:35
相关论文
共 50 条