Relative entropy for von Neumann subalgebras

被引:14
|
作者
Gao, Li [1 ]
Junge, Marius [2 ]
LaRacuente, Nicholas [3 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77840 USA
[2] Univ Illinois, Dept Math, 1409 W Green St, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA
关键词
Relative entropy; von Neumann subalgebra; subfactor index; STRONG CONVERSE; INDEX;
D O I
10.1142/S0129167X20500469
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We revisit the connection between index and relative entropy for an inclusion of finite von Neumann algebras. We observe that the Pimsner-Popa index connects to sandwiched p-Renyi relative entropy for all 1/2 <= p <= infinity, including Umegaki's relative entropy at p = 1. Rased on that, we introduce a new notation of relative entropy to a subalgebra which generalizes subfactors index. This relative entropy has application in estimating decoherence time of quantum Markov semigroups.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Fractal von Neumann entropy
    da Cruz, W
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 313 (3-4) : 446 - 452
  • [32] On the von Neumann entropy of a graph
    Lin, Hongying
    Zhou, Bo
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 448 - 455
  • [33] Continuity of the von Neumann Entropy
    M. E. Shirokov
    Communications in Mathematical Physics, 2010, 296 : 625 - 654
  • [34] Von Neumann entropy and majorization
    Li, Yuan
    Busch, Paul
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 384 - 393
  • [35] On the von Neumann entropy of graphs
    Minello, Giorgia
    Rossi, Luca
    Torsello, Andrea
    JOURNAL OF COMPLEX NETWORKS, 2019, 7 (04) : 491 - 514
  • [36] Continuity of the von Neumann Entropy
    Shirokov, M. E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (03) : 625 - 654
  • [37] Von Neumann Entropy in QFT
    Longo, Roberto
    Xu, Feng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (03) : 1031 - 1054
  • [38] Von Neumann Entropy in QFT
    Roberto Longo
    Feng Xu
    Communications in Mathematical Physics, 2021, 381 : 1031 - 1054
  • [39] A Note on the Estimation of Von Neumann and Relative Entropy via Quantum State Observers
    Balas, Mark
    Gehlot, Vinod P.
    Griffith, Tristan D.
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 3807 - 3811
  • [40] On commutative, operator amenable subalgebras of finite von Neumann algebras
    Choi, Yemon
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 678 : 201 - 222