Von Neumann Entropy in QFT

被引:0
|
作者
Roberto Longo
Feng Xu
机构
[1] Università di Roma Tor Vergata,Dipartimento di Matematica
[2] University of California at Riverside,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the framework of Quantum Field Theory, we provide a rigorous, operator algebraic notion of entanglement entropy associated with a pair of open double cones O⊂O~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O \subset {\widetilde{O}}$$\end{document} of the spacetime, where the closure of O is contained in O~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{O}}$$\end{document}. Given a QFT net A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} of local von Neumann algebras A(O)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}(O)$$\end{document}, we consider the von Neumann entropy SA(O,O~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathcal {A}}(O, {\widetilde{O}})$$\end{document} of the restriction of the vacuum state to the canonical intermediate type I factor for the inclusion of von Neumann algebras A(O)⊂A(O~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}(O)\subset {\mathcal {A}}({\widetilde{O}})$$\end{document} (split property). We show that this canonical entanglement entropy SA(O,O~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\mathcal {A}}(O, {\widetilde{O}})$$\end{document} is finite for the chiral conformal net on the circle generated by finitely many free Fermions (here double cones are intervals). To this end, we first study the notion of von Neumann entropy of a closed real linear subspace of a complex Hilbert space, that we then estimate for the local free fermion subspaces. We further consider the lower entanglement entropy S̲A(O,O~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{S}}_{\mathcal {A}}(O, {\widetilde{O}})$$\end{document}, the infimum of the vacuum von Neumann entropy of F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document}, where F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {F}}$$\end{document} here runs over all the intermediate, discrete type I von Neumann algebras. We prove that S̲A(O,O~)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\underline{S}}_{\mathcal {A}}(O, {\widetilde{O}})$$\end{document} is finite for the local chiral conformal net generated by finitely many commuting U(1)-currents.
引用
收藏
页码:1031 / 1054
页数:23
相关论文
共 50 条
  • [1] Von Neumann Entropy in QFT
    Longo, Roberto
    Xu, Feng
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 381 (03) : 1031 - 1054
  • [2] Fractal von Neumann entropy
    da Cruz, W
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 313 (3-4) : 446 - 452
  • [3] On the von Neumann entropy of a graph
    Lin, Hongying
    Zhou, Bo
    DISCRETE APPLIED MATHEMATICS, 2018, 247 : 448 - 455
  • [4] Continuity of the von Neumann Entropy
    M. E. Shirokov
    Communications in Mathematical Physics, 2010, 296 : 625 - 654
  • [5] Von Neumann entropy and majorization
    Li, Yuan
    Busch, Paul
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (01) : 384 - 393
  • [6] On the von Neumann entropy of graphs
    Minello, Giorgia
    Rossi, Luca
    Torsello, Andrea
    JOURNAL OF COMPLEX NETWORKS, 2019, 7 (04) : 491 - 514
  • [7] Continuity of the von Neumann Entropy
    Shirokov, M. E.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (03) : 625 - 654
  • [8] Kurtosis of von Neumann entanglement entropy
    Huang, Youyi
    Wei, Lu
    Collaku, Bjordis
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (50)
  • [9] The von Neumann entropy: A reply to Shenker
    Henderson, L
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2003, 54 (02): : 291 - 296
  • [10] A New Inequality for the von Neumann Entropy
    Noah Linden
    Andreas Winter
    Communications in Mathematical Physics, 2005, 259 : 129 - 138