Approximate Recovery and Relative Entropy I: General von Neumann Subalgebras

被引:11
|
作者
Faulkner, Thomas [1 ,2 ]
Hollands, Stefan [3 ,4 ]
Swingle, Brian [5 ]
Wang, Yixu [5 ]
机构
[1] Univ Illinois, IL, Santa Barbara, CA USA
[2] Univ Illinois, KITP, Santa Barbara, CA USA
[3] Univ Leipzig, ITP, MPI MiS Leipzig, Leipzig, Germany
[4] KITP, Santa Barbara, CA 93106 USA
[5] Univ Maryland, Maryland Ctr Fundamental Phys, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
QUANTUM-FIELD THEORY; CONDITIONAL EXPECTATIONS; SUFFICIENCY; STATES; MONOTONICITY; CHANNELS; THEOREM; LIEB;
D O I
10.1007/s00220-021-04143-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the existence of a universal recovery channel that approximately recovers states on a von Neumann subalgebra when the change in relative entropy, with respect to a fixed reference state, is small. Our result is a generalization of previous results that applied to type-I von Neumann algebras by Junge at al. [arXiv:1509.07127]. We broadly follow their proof strategy but consider here arbitrary von Neumann algebras, where qualitatively new issues arise. Our results hinge on the construction of certain analytic vectors and computations/estimations of their Araki-Masuda L-p norms. We comment on applications to the quantum null energy condition.
引用
收藏
页码:349 / 397
页数:49
相关论文
共 50 条
  • [1] Approximate Recovery and Relative Entropy I: General von Neumann Subalgebras
    Thomas Faulkner
    Stefan Hollands
    Brian Swingle
    Yixu Wang
    [J]. Communications in Mathematical Physics, 2022, 389 : 349 - 397
  • [2] Relative entropy for von Neumann subalgebras
    Gao, Li
    Junge, Marius
    LaRacuente, Nicholas
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (06)
  • [3] VON NEUMANN ENTROPY AND RELATIVE POSITION BETWEEN SUBALGEBRAS
    Choda, Marie
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2013, 24 (08)
  • [4] Approximate recoverability and relative entropy II: 2-positive channels of general von Neumann algebras
    Faulkner, Thomas
    Hollands, Stefan
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2022, 112 (02)
  • [5] Approximate recoverability and relative entropy II: 2-positive channels of general von Neumann algebras
    Thomas Faulkner
    Stefan Hollands
    [J]. Letters in Mathematical Physics, 2022, 112
  • [6] Maximal von Neumann subalgebras in type I von Neumann algebras
    Zhou, Xiaoyan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 532 (02)
  • [7] Approximate von Neumann entropy for directed graphs
    Ye, Cheng
    Wilson, Richard C.
    Comin, Cesar H.
    Costa, Luciano da F.
    Hancock, Edwin R.
    [J]. PHYSICAL REVIEW E, 2014, 89 (05)
  • [8] A New Generalization of von Neumann Relative Entropy
    Li, Jing
    Cao, Huaixin
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2017, 56 (11) : 3405 - 3424
  • [9] A New Generalization of von Neumann Relative Entropy
    Jing Li
    Huaixin Cao
    [J]. International Journal of Theoretical Physics, 2017, 56 : 3405 - 3424
  • [10] Characterizing Graphs Using Approximate von Neumann Entropy
    Han, Lin
    Hancock, Edwin R.
    Wilson, Richard C.
    [J]. PATTERN RECOGNITION AND IMAGE ANALYSIS: 5TH IBERIAN CONFERENCE, IBPRIA 2011, 2011, 6669 : 484 - 491