Information and Entropy in Quantum Brownian MotionThermodynamic Entropy versus von Neumann Entropy

被引:0
|
作者
Christian Hörhammer
Helmut Büttner
机构
[1] Universität Bayreuth,Theoretische Physik I
来源
关键词
Quantum Brownian motion; Information; Entropy; Landauer principle;
D O I
暂无
中图分类号
学科分类号
摘要
We compare the thermodynamic entropy of a quantum Brownian oscillator derived from the partition function of the subsystem with the von Neumann entropy of its reduced density matrix. At low temperatures we find deviations between these two entropies which are due to the fact that the Brownian particle and its environment are entangled. We give an explanation for these findings and point out that these deviations become important in cases where statements about the information capacity of the subsystem are associated with thermodynamic properties, as it is the case for the Landauer principle.
引用
收藏
页码:1161 / 1174
页数:13
相关论文
共 50 条
  • [21] Von Neumann's entropy does not correspond to thermodynamic entropy
    Hemmo, Meir
    Shenker, Orly
    PHILOSOPHY OF SCIENCE, 2006, 73 (02) : 153 - 174
  • [22] Replacing energy by von Neumann entropy in quantum phase transitions
    Kopp, Angela
    Jia, Xun
    Chakravarty, Sudip
    ANNALS OF PHYSICS, 2007, 322 (06) : 1466 - 1476
  • [23] On the von Neumann entropy of certain quantum walks subject to decoherence
    Liu, Chaobin
    Petulante, Nelson
    MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2010, 20 (06) : 1099 - 1115
  • [24] A von Neumann entropy condition of unitary equivalence of quantum states
    He, Kan
    Hou, Jinchuan
    Li, Ming
    APPLIED MATHEMATICS LETTERS, 2012, 25 (08) : 1153 - 1156
  • [25] On Quantum Channels and Operations Preserving Finiteness of the von Neumann Entropy
    Shirokov, M. E.
    Bulinski, A. V.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (12) : 2383 - 2396
  • [26] On Quantum Channels and Operations Preserving Finiteness of the von Neumann Entropy
    M. E. Shirokov
    A. V. Bulinski
    Lobachevskii Journal of Mathematics, 2020, 41 : 2383 - 2396
  • [27] Proposal for a direct measurement of the von Neumann entropy and the relative entropy of coherence
    Bernardo, Bertulio de Lima
    PHYSICA SCRIPTA, 2020, 95 (04)
  • [28] A New Inequality for the von Neumann Entropy
    Noah Linden
    Andreas Winter
    Communications in Mathematical Physics, 2005, 259 : 129 - 138
  • [29] Kurtosis of von Neumann entanglement entropy
    Huang, Youyi
    Wei, Lu
    Collaku, Bjordis
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (50)
  • [30] The von Neumann entropy: A reply to Shenker
    Henderson, L
    BRITISH JOURNAL FOR THE PHILOSOPHY OF SCIENCE, 2003, 54 (02): : 291 - 296