A Proof of a Conjecture on the Distance Spectral Radius and Maximum Transmission of Graphs

被引:0
|
作者
Lele Liu
Haiying Shan
Changxiang He
机构
[1] University of Shanghai for Science and Technology,College of Science
[2] Tongji University,School of Mathematical Sciences
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Distance matrix; Distance spectral radius; Non-transmission-regular graph; 05C50;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a simple connected graph, and D(G) be the distance matrix of G. Suppose that Dmax(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)$$\end{document} and λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda _1(G)$$\end{document} are the maximum row sum and the spectral radius of D(G), respectively. In this paper, we give a lower bound for Dmax(G)-λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{\max }(G)-\lambda _1(G)$$\end{document}, and characterize the extremal graphs attaining the bound. As a corollary, we solve a conjecture posed by Liu, Shu and Xue.
引用
下载
收藏
相关论文
共 50 条
  • [1] A Proof of a Conjecture on the Distance Spectral Radius and Maximum Transmission of Graphs
    Liu, Lele
    Shan, Haiying
    He, Changxiang
    GRAPHS AND COMBINATORICS, 2022, 38 (02)
  • [2] Proof of a conjecture on the distance Laplacian spectral radius of graphs
    Xue, Jie
    Shu, Jinlong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 540 : 84 - 94
  • [3] A proof of a conjecture on the distance spectral radius
    Wang, Yanna
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 674 : 124 - 154
  • [4] Proof of a conjecture on the spectral radius of C4-free graphs
    Zhai, Mingqing
    Wang, Bing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (07) : 1641 - 1647
  • [5] Proof of a conjecture on the spectral radius of C4-free graphs
    School of Mathematical Science, Chuzhou University, Anhui, Chuzhou 239012, China
    不详
    Linear Algebra Its Appl, 7 (1641-1647):
  • [6] A conjecture on the spectral radius of graphs
    Sun, Shaowei
    Das, Kinkar Chandra
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 588 (588) : 74 - 80
  • [7] Distance spectral radius of unicyclic graphs with fixed maximum degree
    Huang, Hezan
    Zhou, Bo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (04)
  • [8] Proof of a conjecture on the ε-spectral radius of trees
    Li, Jianping
    Qiu, Leshi
    Zhang, Jianbin
    AIMS MATHEMATICS, 2023, 8 (02): : 4363 - 4371
  • [9] On distance spectral radius of graphs
    Wang, Yanna
    Zhou, Bo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (08) : 3490 - 3503
  • [10] On Distance Spectral Radius and Distance Energy of Graphs
    Zhou, Bo
    Ilic, Aleksandar
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 64 (01) : 261 - 280