Machine learning a molecular Hamiltonian for predicting electron dynamics

被引:0
|
作者
Bhat H.S. [1 ]
Ranka K. [2 ]
Isborn C.M. [2 ]
机构
[1] Applied Mathematics Department, University of California, Merced, 5200 N. Lake Rd., Merced, 95343, CA
[2] Chemistry Department, University of California, Merced, 5200 N. Lake Rd., Merced, 95343, CA
来源
Intl. J. Dyn. Cont. | 2020年 / 4卷 / 1089-1101期
基金
美国国家科学基金会;
关键词
Electron density; electron dynamics; Hamiltonian; Machine learning; System identification;
D O I
10.1007/s40435-020-00699-8
中图分类号
学科分类号
摘要
We develop a computational method to learn a molecular Hamiltonian matrix from matrix-valued time series of the electron density. As we demonstrate for three small molecules, the resulting Hamiltonians can be used for electron density evolution, producing highly accurate results even when propagating 1,000 time steps beyond the training data. As a more rigorous test, we use the learned Hamiltonians to simulate electron dynamics in the presence of an applied electric field, extrapolating to a problem that is beyond the field-free training data. We find that the resulting electron dynamics predicted by our learned Hamiltonian are in close quantitative agreement with the ground truth. Our method relies on combining a reduced-dimensional, linear statistical model of the Hamiltonian with a time-discretization of the quantum Liouville equation within time-dependent Hartree Fock theory. We train the model using a least-squares solver, avoiding numerous, CPU-intensive optimization steps. For both field-free and field-on problems, we quantify training and propagation errors, highlighting areas for future development. © 2020, Springer-Verlag GmbH Germany, part of Springer Nature.
引用
收藏
页码:1089 / 1101
页数:12
相关论文
共 50 条
  • [41] Predicting lipid and ligand binding sites in TRPV1 channel by molecular dynamics simulation and machine learning
    Zheng, Wenjun
    Wen, Han
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2021, 89 (08) : 966 - 977
  • [42] Predicting Mechanical Properties of Boron Nitride Nanosheets Obtained from Molecular Dynamics Simulation: A Machine Learning Method
    Pan, Jiansheng
    Liu, Huan
    Zhu, Wendong
    Wang, Shunbo
    Gao, Xifeng
    Zhao, Pengyue
    CRYSTALS, 2024, 14 (01)
  • [43] Classifying and predicting the electron affinity of diamond nanoparticles using machine learning
    Feigl, C. A.
    Motevalli, B.
    Parker, A. J.
    Sun, B.
    Barnard, A. S.
    NANOSCALE HORIZONS, 2019, 4 (04) : 983 - 990
  • [44] Machine-Learned Kohn-Sham Hamiltonian Mapping for Nonadiabatic Molecular Dynamics
    Shakiba, Mohammad
    Akimov, Alexey V.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (08) : 2992 - 3007
  • [45] Machine Learning for Predicting Personality and Psychological Symptoms from Behavioral Dynamics
    Wang, Min
    Xu, Ao
    Fan, Chenxiao
    Sun, Xiao
    ELECTRONICS, 2025, 14 (03):
  • [46] Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies
    Hansen, Katja
    Montavon, Gregoire
    Biegler, Franziska
    Fazli, Siamac
    Rupp, Matthias
    Scheffler, Matthias
    von Lilienfeld, O. Anatole
    Tkatchenko, Alexandre
    Mueller, Klaus-Robert
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) : 3404 - 3419
  • [47] Predicting molecular ordering in a binary liquid crystal using machine learning
    Inokuchi, Takuya
    Okamoto, Ryosuke
    Arai, Noriyoshi
    LIQUID CRYSTALS, 2020, 47 (03) : 438 - 448
  • [48] Predicting the Results of RNA Molecular Specific Hybridization Using Machine Learning
    Zhu, Weijun
    Liu, Xiaokai
    Xu, Mingliang
    Wu, Huanmei
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (06) : 1384 - 1396
  • [49] Predicting liposome formulations by the integrated machine learning and molecular modeling approaches
    Run Han
    Zhuyifan Ye
    Yunsen Zhang
    Yaxin Cheng
    Ying Zheng
    Defang Ouyang
    AsianJournalofPharmaceuticalSciences, 2023, 18 (03) : 70 - 83
  • [50] Extending machine learning beyond interatomic potentials for predicting molecular properties
    Fedik, Nikita
    Zubatyuk, Roman
    Kulichenko, Maksim
    Lubbers, Nicholas
    Smith, Justin S.
    Nebgen, Benjamin
    Messerly, Richard
    Li, Ying Wai
    Boldyrev, Alexander, I
    Barros, Kipton
    Isayev, Olexandr
    Tretiak, Sergei
    NATURE REVIEWS CHEMISTRY, 2022, 6 (09) : 653 - 672