Classifying and predicting the electron affinity of diamond nanoparticles using machine learning

被引:15
|
作者
Feigl, C. A. [1 ]
Motevalli, B. [1 ]
Parker, A. J. [1 ]
Sun, B. [1 ]
Barnard, A. S. [1 ]
机构
[1] CSIRO Data61, Docklands, Vic, Australia
关键词
NANODIAMOND HYDROGELS; FEATURES;
D O I
10.1039/c9nh00060g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using a combination of electronic structure simulations and machine learning we have shown that the characteristic negative electron affinity (NEA) of hydrogenated diamond nanoparticles exhibits a class-dependent structure/property relationship. Using a random forest classifier we find that the NEA will either be consistent with bulk diamond surfaces, or much higher than the bulk diamond value; and using class-specific random forest regressors with extra trees we find that these classes are either size-dependent or anisotropy-dependent, respectively. This suggests that the purification or screening of nanodiamond samples to improve homogeneity may be undertaken based on the negative electron affinity.
引用
收藏
页码:983 / 990
页数:8
相关论文
共 50 条
  • [1] Predicting and Classifying Breast Cancer Using Machine Learning
    Alkhathlan, Lina
    Saudagar, Abdul Khader Jilani
    [J]. JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (06) : 497 - 514
  • [2] Predicting In Vitro Neurotoxicity Induced by Nanoparticles Using Machine Learning
    Furxhi, Irini
    Murphy, Finbarr
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (15) : 1 - 21
  • [3] Machine learning for classifying and predicting grape maturity indices using absorbance and fluorescence spectra
    Armstrong, Claire E. J.
    Gilmore, Adam M.
    Boss, Paul K.
    Pagay, Vinay
    Jeffery, David W.
    [J]. FOOD CHEMISTRY, 2023, 403
  • [4] Machine learning as a tool for classifying electron tomographic reconstructions
    Staniewicz, Lech
    Midgley, Paul A.
    [J]. ADVANCED STRUCTURAL AND CHEMICAL IMAGING, 2015, 1
  • [5] Machine Learning approaches to classifying and predicting disease progression in Adrenomyeloneuropathy
    Turk, B.
    Fine, A.
    Fan, Y.
    Wei, J.
    Keller, J.
    Raymond, G.
    Unberath, M.
    Fatemi, A.
    [J]. ANNALS OF NEUROLOGY, 2022, 92 : S33 - S34
  • [6] Classifying Breast Cancer Using machine learning
    不详
    [J]. CURRENT SCIENCE, 2020, 119 (05): : 734 - 735
  • [7] Classifying Ransomware Using Machine Learning Algorithms
    Egunjobi, Samuel
    Parkinson, Simon
    Crampton, Andrew
    [J]. INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING (IDEAL 2019), PT II, 2019, 11872 : 45 - 52
  • [8] Classifying Convective Storms Using Machine Learning
    Jergensen, G. Eli
    McGovern, Amy
    Lagerquist, Ryan
    Smith, Travis
    [J]. WEATHER AND FORECASTING, 2020, 35 (02) : 537 - 559
  • [9] Predicting the interaction of nanoparticles with proteins using lab automation and machine learning
    Poulsen, Karsten M.
    Payne, Christine K.
    [J]. BIOPHYSICAL JOURNAL, 2023, 122 (03) : 291A - 291A
  • [10] Classifying Drought in Ethiopia Using Machine Learning
    Richman, Michael B.
    Leslie, Lance M.
    Segele, Zewdu T.
    [J]. COMPLEX ADAPTIVE SYSTEMS, 2016, 95 : 229 - 236