Machine learning as a tool for classifying electron tomographic reconstructions

被引:18
|
作者
Staniewicz, Lech [1 ]
Midgley, Paul A. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
基金
欧洲研究理事会;
关键词
Electron tomography; Image processing; Machine learning; Image classification; Thresholding;
D O I
10.1186/s40679-015-0010-x
中图分类号
TH742 [显微镜];
学科分类号
摘要
Electron tomographic reconstructions often contain artefacts from sources such as noise in the projections and a "missing wedge" of projection angles which can hamper quantitative analysis. We present a machine-learning approach using freely available software for analysing imperfect reconstructions to be used in place of the more traditional thresholding based on grey-level technique and show that a properly trained image classifier can achieve manual levels of accuracy even on heavily artefacted data, though if multiple reconstructions are being processed, a separate classifier will need to be trained on each reconstruction for maximum accuracy.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Noise reduction in electron tomographic reconstructions
    Hegerl, R
    Stoschek, A
    [J]. ELECTRON MICROSCOPY 1998, VOL 4: BIOLOGICAL SCIENCES, 1998, : 451 - 452
  • [2] METHODS FOR SEGMENTATION AND INTERPRETATION OF ELECTRON TOMOGRAPHIC RECONSTRUCTIONS
    Volkmann, Niels
    [J]. METHODS IN ENZYMOLOGY, VOL 483: CRYO-EM, PART C: ANALYSES, INTERPRETATION, AND CASE STUDIES, 2010, 483 : 31 - 46
  • [3] Classifying and predicting the electron affinity of diamond nanoparticles using machine learning
    Feigl, C. A.
    Motevalli, B.
    Parker, A. J.
    Sun, B.
    Barnard, A. S.
    [J]. NANOSCALE HORIZONS, 2019, 4 (04) : 983 - 990
  • [4] Machine learning for classifying narrow-beam electron diffraction data
    Matinyan, Senik
    Demir, Burak
    Filipcik, Pavel
    Abrahams, Jan Pieter
    van Genderen, Eric
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2023, 79 : 360 - 368
  • [5] Machine learning for classifying learning objects
    Ranganathan, Girish R.
    Biletskiy, Yevgen
    MacIsaac, Dawn
    [J]. 2006 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1-5, 2006, : 739 - +
  • [6] Denoising of electron tomographic reconstructions using multiscale transformations
    Stoschek, A
    Hegerl, R
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 1997, 120 (03) : 257 - 265
  • [7] A deep learning approach to the automatic detection of alignment errors in cryo-electron tomographic reconstructions
    de Isidro-Gomez, F. P.
    Vilas, J. L.
    Losanaa, P.
    Carazo, J. M.
    Sorzano, C. O. S.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2024, 216 (01)
  • [8] Machine learning in classifying bitcoin addresses
    Garin, Leonid
    Gisin, Vladimir
    [J]. JOURNAL OF FINANCE AND DATA SCIENCE, 2023, 9
  • [9] Classifying superheavy elements by machine learning
    Gong, Sheng
    Wu, Wei
    Wang, Fancy Qian
    Liu, Jie
    Zhao, Yu
    Shen, Yiheng
    Wang, Shuo
    Sun, Qiang
    Wang, Qian
    [J]. PHYSICAL REVIEW A, 2019, 99 (02)
  • [10] Putting structure into context: fitting of atomic models into electron microscopic and electron tomographic reconstructions
    Volkmann, Niels
    [J]. CURRENT OPINION IN CELL BIOLOGY, 2012, 24 (01) : 141 - 147