Machine learning as a tool for classifying electron tomographic reconstructions

被引:18
|
作者
Staniewicz, Lech [1 ]
Midgley, Paul A. [1 ]
机构
[1] Univ Cambridge, Dept Mat Sci & Met, 27 Charles Babbage Rd, Cambridge CB3 0FS, England
基金
欧洲研究理事会;
关键词
Electron tomography; Image processing; Machine learning; Image classification; Thresholding;
D O I
10.1186/s40679-015-0010-x
中图分类号
TH742 [显微镜];
学科分类号
摘要
Electron tomographic reconstructions often contain artefacts from sources such as noise in the projections and a "missing wedge" of projection angles which can hamper quantitative analysis. We present a machine-learning approach using freely available software for analysing imperfect reconstructions to be used in place of the more traditional thresholding based on grey-level technique and show that a properly trained image classifier can achieve manual levels of accuracy even on heavily artefacted data, though if multiple reconstructions are being processed, a separate classifier will need to be trained on each reconstruction for maximum accuracy.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Development of an approach for optimizing the accuracy of classifying claims narratives using a machine learning tool (TEXTMINER[4])
    Corns, Helen L.
    Marucci, Helen R.
    Lehto, Mark R.
    [J]. Human Interface and the Management of Information: Methods, Techniques and Tools in Information Design, Pt 1, Proceedings, 2007, 4557 : 411 - 416
  • [32] Rational approximations for tomographic reconstructions
    Reynolds, Matthew
    Beylkin, Gregory
    Monzon, Lucas
    [J]. INVERSE PROBLEMS, 2013, 29 (06)
  • [33] Face image reconstructions by using machine learning system
    Citko, Wieslaw
    Trzebiatowski, Adam
    Sienko, Wieslaw
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2021, 97 (12): : 191 - 194
  • [34] Machine learning and cosmographic reconstructions of quintessence and the swampland conjectures
    Arjona, Ruben
    Nesseris, Savvas
    [J]. PHYSICAL REVIEW D, 2021, 103 (06)
  • [35] A Machine Learning Approach for Classifying Road Accident Hotspots
    Amorim, Brunna de Sousa Pereira
    Firmino, Anderson Almeida
    Baptista, Claudio de Souza
    Braz, Geraldo
    de Paiva, Anselmo Cardoso
    de Almeida, Francisco Edeverton
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (06)
  • [36] Classifying snapshots of the doped Hubbard model with machine learning
    Bohrdt, Annabelle
    Chiu, Christie S.
    Jig, Geoffrey
    Xu, Muqing
    Greif, Daniel
    Greiner, Markus
    Demler, Eugene
    Grusdt, Fabian
    Knap, Michael
    [J]. NATURE PHYSICS, 2019, 15 (09) : 921 - 924
  • [37] A Simplified Machine Learning Approach to Classifying Individual Websites
    Burns, Tina
    Song, Chuxu
    Seskar, Ivan
    Ortiz, Jorge
    Martin, Richard P.
    [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 6109 - 6114
  • [38] CLASSIFYING EEG SIGNAL SEGMENTS USING MACHINE LEARNING
    Anghel, Ana Magdalena
    Zaharia, Andrei
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2024, 86 (03): : 113 - 120
  • [39] Classifying features of freeway crashes using machine learning
    Najafi, Zahra
    Sadeghi, Rasool
    Arghami, Shirazeh
    [J]. INTERNATIONAL JOURNAL OF CRASHWORTHINESS, 2022, 27 (06) : 1678 - 1686
  • [40] Classifying snapshots of the doped Hubbard model with machine learning
    Annabelle Bohrdt
    Christie S. Chiu
    Geoffrey Ji
    Muqing Xu
    Daniel Greif
    Markus Greiner
    Eugene Demler
    Fabian Grusdt
    Michael Knap
    [J]. Nature Physics, 2019, 15 : 921 - 924