Large Deviation of the Density Profile in the Steady State of the Open Symmetric Simple Exclusion Process

被引:0
|
作者
B. Derrida
J. L. Lebowitz
E. R. Speer
机构
[1] Ecole Normale Supérieure,Laboratoire de Physique Statistique
[2] Rutgers University,Department of Mathematics
来源
关键词
large deviations; symmetric simple exclusion process; open system; stationary nonequilibrium state;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an open one dimensional lattice gas on sites i=1,..., N, with particles jumping independently with rate 1 to neighboring interior empty sites, the simple symmetric exclusion process. The particle fluxes at the left and right boundaries, corresponding to exchanges with reservoirs at different chemical potentials, create a stationary nonequilibrium state (SNS) with a steady flux of particles through the system. The mean density profile in this state, which is linear, describes the typical behavior of a macroscopic system, i.e., this profile occurs with probability 1 when N→∞. The probability of microscopic configurations corresponding to some other profile ρ(x), x=i/N, has the asymptotic form exp[−N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document}({ρ})]; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document} is the large deviation functional. In contrast to equilibrium systems, for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document}eq({ρ}) is just the integral of the appropriately normalized local free energy density, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document} we find here for the nonequilibrium system is a nonlocal function of ρ. This gives rise to the long range correlations in the SNS predicted by fluctuating hydrodynamics and suggests similar non-local behavior of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document} in general SNS, where the long range correlations have been observed experimentally.
引用
收藏
页码:599 / 634
页数:35
相关论文
共 50 条
  • [31] Large Deviations of a Tracer in the Symmetric Exclusion Process
    Imamura, Takashi
    Mallick, Kirone
    Sasamoto, Tomohiro
    PHYSICAL REVIEW LETTERS, 2017, 118 (16)
  • [32] On the equilibrium state of the one-dimensional near-symmetric simple exclusion process
    Zhang, Fuxi
    Zhang, Wei
    STATISTICS & PROBABILITY LETTERS, 2015, 98 : 20 - 28
  • [33] THE CUTOFF PROFILE FOR THE SIMPLE EXCLUSION PROCESS ON THE CIRCLE
    Lacoin, Hubert
    ANNALS OF PROBABILITY, 2016, 44 (05): : 3399 - 3430
  • [34] Entanglement distribution in the quantum symmetric simple exclusion process
    Bernard, Denis
    Piroli, Lorenzo
    PHYSICAL REVIEW E, 2021, 104 (01)
  • [35] Particle Model for the Reservoirs in the Simple Symmetric Exclusion Process
    Thu Dang Thien Nguyen
    Journal of Statistical Physics, 2019, 175 : 402 - 417
  • [36] Symmetric simple exclusion process in dynamic environment: hydrodynamics
    Redig, Frank
    Saada, Ellen
    Sau, Federico
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 47
  • [37] Particle Model for the Reservoirs in the Simple Symmetric Exclusion Process
    Thu Dang Thien Nguyen
    JOURNAL OF STATISTICAL PHYSICS, 2019, 175 (02) : 402 - 417
  • [38] The asymmetric simple exclusion process with an open boundary
    Tracy, Craig A.
    Widom, Harold
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (10)
  • [39] Hydrodynamical Behavior for the Symmetric Simple Partial Exclusion with Open Boundary
    Franceschini, C.
    Goncalves, P.
    Salvador, B.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2023, 26 (02)
  • [40] Hydrodynamical Behavior for the Symmetric Simple Partial Exclusion with Open Boundary
    C. Franceschini
    P. Gonçalves
    B. Salvador
    Mathematical Physics, Analysis and Geometry, 2023, 26