Particle Model for the Reservoirs in the Simple Symmetric Exclusion Process

被引:0
|
作者
Thu Dang Thien Nguyen
机构
[1] Gran Sasso Science Institute,Department of Mathematics
[2] University of Quynhon,undefined
来源
关键词
Hydrodynamic limits; Adiabatic limits; Ideal reservoir limits; Global equilibrium limits;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will study the long time behavior of the simple symmetric exclusion process in the “channel” ΛN=[1,N]∩N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _N=[1,N]\cap \mathbb {N}$$\end{document} with reservoirs at the boundaries. These reservoirs are also systems of particles which can be exchanged with the particles in the channel. The size M of each reservoir is much larger than the one of the channel, i.e. M=N1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=N^{1+\alpha }$$\end{document} for a fixed number α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}. Based on the size of the channel and the holding time at each reservoir, we will investigate some types of rescaling time.
引用
收藏
页码:402 / 417
页数:15
相关论文
共 50 条
  • [1] Particle Model for the Reservoirs in the Simple Symmetric Exclusion Process
    Thu Dang Thien Nguyen
    JOURNAL OF STATISTICAL PHYSICS, 2019, 175 (02) : 402 - 417
  • [2] A simple symmetric exclusion process driven by an asymmetric tracer particle
    Ayyer, Arvind
    ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (04): : 687 - 713
  • [3] Current Reservoirs in the Simple Exclusion Process
    A. De Masi
    E. Presutti
    D. Tsagkarogiannis
    M. E. Vares
    Journal of Statistical Physics, 2011, 144
  • [4] Current Reservoirs in the Simple Exclusion Process
    De Masi, A.
    Presutti, E.
    Tsagkarogiannis, D.
    Vares, M. E.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 144 (06) : 1151 - 1170
  • [5] Open Quantum Symmetric Simple Exclusion Process
    Bernard, Denis
    Jin, Tony
    PHYSICAL REVIEW LETTERS, 2019, 123 (08)
  • [6] Random Walk on the Simple Symmetric Exclusion Process
    Hilario, Marcelo R.
    Kious, Daniel
    Teixeira, Augusto
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 379 (01) : 61 - 101
  • [7] Symmetric simple exclusion process with free boundaries
    De Masi, Anna
    Ferrari, Pablo A.
    Presutti, Errico
    PROBABILITY THEORY AND RELATED FIELDS, 2015, 161 (1-2) : 155 - 193
  • [8] Symmetric simple exclusion process with free boundaries
    Anna De Masi
    Pablo A. Ferrari
    Errico Presutti
    Probability Theory and Related Fields, 2015, 161 : 155 - 193
  • [9] Random Walk on the Simple Symmetric Exclusion Process
    Marcelo R. Hilário
    Daniel Kious
    Augusto Teixeira
    Communications in Mathematical Physics, 2020, 379 : 61 - 101
  • [10] COALESCING AND BRANCHING SIMPLE SYMMETRIC EXCLUSION PROCESS
    Hartarsky, Ivailo
    Martinelli, Fabio
    Toninelli, Cristina
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2841 - 2859