Particle Model for the Reservoirs in the Simple Symmetric Exclusion Process

被引:0
|
作者
Thu Dang Thien Nguyen
机构
[1] Gran Sasso Science Institute,Department of Mathematics
[2] University of Quynhon,undefined
来源
关键词
Hydrodynamic limits; Adiabatic limits; Ideal reservoir limits; Global equilibrium limits;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will study the long time behavior of the simple symmetric exclusion process in the “channel” ΛN=[1,N]∩N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _N=[1,N]\cap \mathbb {N}$$\end{document} with reservoirs at the boundaries. These reservoirs are also systems of particles which can be exchanged with the particles in the channel. The size M of each reservoir is much larger than the one of the channel, i.e. M=N1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=N^{1+\alpha }$$\end{document} for a fixed number α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}. Based on the size of the channel and the holding time at each reservoir, we will investigate some types of rescaling time.
引用
收藏
页码:402 / 417
页数:15
相关论文
共 50 条
  • [41] Flux Fluctuations in the One Dimensional Nearest Neighbors Symmetric Simple Exclusion Process
    A. De Masi
    P. A. Ferrari
    Journal of Statistical Physics, 2002, 107 : 677 - 683
  • [42] Large deviations in the symmetric simple exclusion process with slow boundaries: A hydrodynamic perspective
    Saha, Soumyabrata
    Sadhu, Tridib
    SCIPOST PHYSICS, 2024, 17 (02):
  • [43] Particle current in a symmetric exclusion process with time-dependent hopping rates
    Marathe, Rahul
    Jain, Kavita
    Dhar, Abhishek
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [44] PRODUCTION MODEL USING AN ASYMMETRIC SIMPLE EXCLUSION PROCESS
    Shirai, Kenji
    Amano, Yoshinori
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2018, 14 (01): : 65 - 81
  • [45] The Effect of Strong Symmetric Coupling on Two-Lane Totally Symmetric Simple Exclusion Process with Junction
    Huo, X.
    Lv, C.
    Cui, X.
    Xiao, S.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 18 (01) : 357 - 363
  • [46] Current fluctuations in a partially asymmetric simple exclusion process with a defect particle
    Lobaskin, Ivan
    Evans, Martin R.
    Mallick, Kirone
    PHYSICAL REVIEW E, 2024, 109 (02)
  • [47] On the distribution of a second-class particle in the asymmetric simple exclusion process
    Tracy, Craig A.
    Widom, Harold
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (42)
  • [48] A LIMIT-THEOREM FOR THE POSITION OF A TAGGED PARTICLE IN A SIMPLE EXCLUSION PROCESS
    SAADA, E
    ANNALS OF PROBABILITY, 1987, 15 (01): : 375 - 381
  • [49] Exact stationary distribution of an asymmetric simple exclusion process with Langmuir kinetics and memory reservoirs
    Ezaki, Takahiro
    Nishinari, Katsuhiro
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (18)
  • [50] Distribution of a Tagged Particle Position in the One-Dimensional Symmetric Simple Exclusion Process with Two-Sided Bernoulli Initial Condition
    Imamura, Takashi
    Mallick, Kirone
    Sasamoto, Tomohiro
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (03) : 1409 - 1444