Particle Model for the Reservoirs in the Simple Symmetric Exclusion Process

被引:0
|
作者
Thu Dang Thien Nguyen
机构
[1] Gran Sasso Science Institute,Department of Mathematics
[2] University of Quynhon,undefined
来源
关键词
Hydrodynamic limits; Adiabatic limits; Ideal reservoir limits; Global equilibrium limits;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will study the long time behavior of the simple symmetric exclusion process in the “channel” ΛN=[1,N]∩N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varLambda _N=[1,N]\cap \mathbb {N}$$\end{document} with reservoirs at the boundaries. These reservoirs are also systems of particles which can be exchanged with the particles in the channel. The size M of each reservoir is much larger than the one of the channel, i.e. M=N1+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=N^{1+\alpha }$$\end{document} for a fixed number α>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha >0$$\end{document}. Based on the size of the channel and the holding time at each reservoir, we will investigate some types of rescaling time.
引用
收藏
页码:402 / 417
页数:15
相关论文
共 50 条
  • [21] Large Deviations in the Symmetric Simple Exclusion Process with Slow Boundaries
    Derrida, Bernard
    Hirschberg, Ori
    Sadhu, Tridib
    JOURNAL OF STATISTICAL PHYSICS, 2021, 182 (01)
  • [22] Solution to the Quantum Symmetric Simple Exclusion Process: The Continuous Case
    Bernard, Denis
    Jin, Tony
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (02) : 1141 - 1185
  • [23] Large Deviations for the Boundary Driven Symmetric Simple Exclusion Process
    L. Bertini
    A. De Sole
    D. Gabrielli
    G. Jona-Lasinio
    C. Landim
    Mathematical Physics, Analysis and Geometry, 2003, 6 : 231 - 267
  • [24] Solution to the Quantum Symmetric Simple Exclusion Process: The Continuous Case
    Denis Bernard
    Tony Jin
    Communications in Mathematical Physics, 2021, 384 : 1141 - 1185
  • [25] Large Deviations in the Symmetric Simple Exclusion Process with Slow Boundaries
    Bernard Derrida
    Ori Hirschberg
    Tridib Sadhu
    Journal of Statistical Physics, 2021, 182
  • [26] Totally asymmetric simple exclusion process with particle annihilation
    Mukherji, Sutapa
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (05):
  • [27] THE SIMPLE EXCLUSION PROCESS AS SEEN FROM A TAGGED PARTICLE
    FERRARI, PA
    ANNALS OF PROBABILITY, 1986, 14 (04): : 1277 - 1290
  • [28] Moderate deviations for the current and tagged particle in symmetric simple exclusion processes
    Xue, Xiaofeng
    Zhao, Linjie
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2023, 167
  • [29] Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion
    Jara, M. D.
    Landim, C.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (05): : 567 - 577
  • [30] Slow to Fast Infinitely Extended Reservoirs for the Symmetric Exclusion Process with Long Jumps
    Bernardin, Cedric
    Goncalves, P.
    Jimenez-Oviedo, B.
    MARKOV PROCESSES AND RELATED FIELDS, 2019, 25 (02) : 217 - 274