Large Deviation of the Density Profile in the Steady State of the Open Symmetric Simple Exclusion Process

被引:0
|
作者
B. Derrida
J. L. Lebowitz
E. R. Speer
机构
[1] Ecole Normale Supérieure,Laboratoire de Physique Statistique
[2] Rutgers University,Department of Mathematics
来源
关键词
large deviations; symmetric simple exclusion process; open system; stationary nonequilibrium state;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an open one dimensional lattice gas on sites i=1,..., N, with particles jumping independently with rate 1 to neighboring interior empty sites, the simple symmetric exclusion process. The particle fluxes at the left and right boundaries, corresponding to exchanges with reservoirs at different chemical potentials, create a stationary nonequilibrium state (SNS) with a steady flux of particles through the system. The mean density profile in this state, which is linear, describes the typical behavior of a macroscopic system, i.e., this profile occurs with probability 1 when N→∞. The probability of microscopic configurations corresponding to some other profile ρ(x), x=i/N, has the asymptotic form exp[−N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document}({ρ})]; \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document} is the large deviation functional. In contrast to equilibrium systems, for which \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document}eq({ρ}) is just the integral of the appropriately normalized local free energy density, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document} we find here for the nonequilibrium system is a nonlocal function of ρ. This gives rise to the long range correlations in the SNS predicted by fluctuating hydrodynamics and suggests similar non-local behavior of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$F$$ \end{document} in general SNS, where the long range correlations have been observed experimentally.
引用
收藏
页码:599 / 634
页数:35
相关论文
共 50 条
  • [21] Symmetric simple exclusion process with free boundaries
    Anna De Masi
    Pablo A. Ferrari
    Errico Presutti
    Probability Theory and Related Fields, 2015, 161 : 155 - 193
  • [22] Random Walk on the Simple Symmetric Exclusion Process
    Marcelo R. Hilário
    Daniel Kious
    Augusto Teixeira
    Communications in Mathematical Physics, 2020, 379 : 61 - 101
  • [23] COALESCING AND BRANCHING SIMPLE SYMMETRIC EXCLUSION PROCESS
    Hartarsky, Ivailo
    Martinelli, Fabio
    Toninelli, Cristina
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (04): : 2841 - 2859
  • [24] Exact large deviation functional of a stationary open driven diffusive system: The asymmetric exclusion process
    Derrida, B
    Lebowitz, JL
    Speer, ER
    JOURNAL OF STATISTICAL PHYSICS, 2003, 110 (3-6) : 775 - 810
  • [25] Large deviation functional of the weakly asymmetric exclusion process
    Enaud, C
    Derrida, B
    JOURNAL OF STATISTICAL PHYSICS, 2004, 114 (3-4) : 537 - 562
  • [26] Exact Large Deviation Functional of a Stationary Open Driven Diffusive System: The Asymmetric Exclusion Process
    B. Derrida
    J. L. Lebowitz
    E. R. Speer
    Journal of Statistical Physics, 2003, 110 : 775 - 810
  • [27] Large deviation function of the partially asymmetric exclusion process
    Lee, DS
    Kim, D
    PHYSICAL REVIEW E, 1999, 59 (06): : 6476 - 6482
  • [28] Exact large deviation function in the asymmetric exclusion process
    Derrida, B
    Lebowitz, JL
    PHYSICAL REVIEW LETTERS, 1998, 80 (02) : 209 - 213
  • [29] Occupation time large deviations of two-dimensional symmetric simple exclusion process
    Chang, CC
    Landim, C
    Lee, TY
    ANNALS OF PROBABILITY, 2004, 32 (1B): : 661 - 691
  • [30] Large Deviation Functional of the Weakly Asymmetric Exclusion Process
    C. Enaud
    B. Derrida
    Journal of Statistical Physics, 2004, 114 : 537 - 562