Multi-dimensional metric approximation by primitive points

被引:0
|
作者
S. G. Dani
Michel Laurent
Arnaldo Nogueira
机构
[1] Indian Institute of Technology Bombay,Department of Mathematics
[2] Institut de Mathématiques de Marseille,undefined
[3] CNRS-UMR 7373,undefined
来源
Mathematische Zeitschrift | 2015年 / 279卷
关键词
Diophantine approximation; Metrical number theory; Primitive points; Ergodic theory; 11J20; 37A17;
D O I
暂无
中图分类号
学科分类号
摘要
We consider diophantine inequalities of the form |Θq+p-y|≤ψ(|q|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$| {\Theta }\mathbf{q}+ \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)$$\end{document}, with Θ∈Matn,m(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \in \mathrm{Mat}_{n,m}({\mathbb R})$$\end{document}, y∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{y}\in {\mathbb R}^n$$\end{document}, where m,n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\in {\mathbb N}$$\end{document}, and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is a function on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb N}$$\end{document} with positive real values, seeking integral solutions q∈Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{q}\in {\mathbb Z}^m$$\end{document} and p∈Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{p}\in {\mathbb Z}^n$$\end{document} for which the restriction of the vector (q,p)t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbf{q}, \mathbf{p})^t$$\end{document} to the components of a given partition π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} are primitive integer points. In this setting, we establish metrical statements in the style of the Khintchine–Groshev Theorem. Similar solutions are considered for the doubly metrical inequality |Θq+Φp-y|≤ψ(|q|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$| {\Theta }\mathbf{q}+\Phi \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)$$\end{document}, with Φ∈Matn,n(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \in \mathrm{Mat}_{n,n}({\mathbb R})$$\end{document} (other notations as before). The results involve the conditions that x↦xm-1ψ(x)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \mapsto x^{m-1}\psi (x)^n$$\end{document} be non-increasing, and that the components of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} have at least n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} elements each.
引用
收藏
页码:1081 / 1101
页数:20
相关论文
共 50 条
  • [41] Clustering Subtrajectories of Moving Objects based on A Distance Metric with Multi-dimensional Weights
    Chen, Yanjun
    Shen, Hong
    Tian, Hui
    2014 SIXTH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING (PAAP), 2014, : 203 - 208
  • [42] Application of Multi-Dimensional Metric Model, Database, and WAM for KM System Evaluation
    Subramanian, D. Venkata
    Geetha, Angelina
    INTERNATIONAL JOURNAL OF KNOWLEDGE MANAGEMENT, 2012, 8 (04) : 1 - 21
  • [43] An accurate estimation algorithm for structural change points of multi-dimensional stochastic models
    Li, Junxia
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (03) : 4817 - 4829
  • [44] A normalization analysis method for monitoring signals based on multi-dimensional feature points
    Gao Z.
    Fan R.
    Luo J.
    Wang M.
    Dianli Xitong Baohu yu Kongzhi/Power System Protection and Control, 2019, 47 (16): : 64 - 70
  • [45] On the speed of convergence to equilibrium states for multi-dimensional maps with indifferent periodic points
    Yuri, M
    NONLINEARITY, 2002, 15 (02) : 429 - 445
  • [46] MULTI-DIMENSIONAL SPARSE STRUCTURED SIGNAL APPROXIMATION USING SPLIT BREGMAN ITERATIONS
    Isaac, Yoann
    Barthelemy, Quentin
    Atif, Jamal
    Gouy-Pailler, Cedric
    Sebag, Michele
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 3826 - 3830
  • [47] Hardware Architecture and Implementation of Clustered Tensor Approximation for Multi-Dimensional Visual Data
    Yang, Chi-Yun
    Yeh, Yang-Ming
    Lu, Yi-Chang
    2020 INTERNATIONAL SYMPOSIUM ON VLSI DESIGN, AUTOMATION AND TEST (VLSI-DAT), 2020,
  • [48] Out-of-core tensor approximation of multi-dimensional matrices of visual data
    Wang, HC
    Wu, Q
    Shi, L
    Yu, YZ
    Ahuja, N
    ACM TRANSACTIONS ON GRAPHICS, 2005, 24 (03): : 527 - 535
  • [49] MULTI-DIMENSIONAL SIGNALING
    WILSON, R
    ECONOMICS LETTERS, 1985, 19 (01) : 17 - 21
  • [50] MULTI-DIMENSIONAL CONSEQUENTIALISM
    Peterson, Martin
    RATIO, 2012, 25 (02) : 177 - 194