Multi-dimensional metric approximation by primitive points

被引:0
|
作者
S. G. Dani
Michel Laurent
Arnaldo Nogueira
机构
[1] Indian Institute of Technology Bombay,Department of Mathematics
[2] Institut de Mathématiques de Marseille,undefined
[3] CNRS-UMR 7373,undefined
来源
Mathematische Zeitschrift | 2015年 / 279卷
关键词
Diophantine approximation; Metrical number theory; Primitive points; Ergodic theory; 11J20; 37A17;
D O I
暂无
中图分类号
学科分类号
摘要
We consider diophantine inequalities of the form |Θq+p-y|≤ψ(|q|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$| {\Theta }\mathbf{q}+ \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)$$\end{document}, with Θ∈Matn,m(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \in \mathrm{Mat}_{n,m}({\mathbb R})$$\end{document}, y∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{y}\in {\mathbb R}^n$$\end{document}, where m,n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\in {\mathbb N}$$\end{document}, and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is a function on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb N}$$\end{document} with positive real values, seeking integral solutions q∈Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{q}\in {\mathbb Z}^m$$\end{document} and p∈Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{p}\in {\mathbb Z}^n$$\end{document} for which the restriction of the vector (q,p)t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbf{q}, \mathbf{p})^t$$\end{document} to the components of a given partition π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} are primitive integer points. In this setting, we establish metrical statements in the style of the Khintchine–Groshev Theorem. Similar solutions are considered for the doubly metrical inequality |Θq+Φp-y|≤ψ(|q|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$| {\Theta }\mathbf{q}+\Phi \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)$$\end{document}, with Φ∈Matn,n(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \in \mathrm{Mat}_{n,n}({\mathbb R})$$\end{document} (other notations as before). The results involve the conditions that x↦xm-1ψ(x)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \mapsto x^{m-1}\psi (x)^n$$\end{document} be non-increasing, and that the components of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} have at least n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} elements each.
引用
收藏
页码:1081 / 1101
页数:20
相关论文
共 50 条
  • [21] Non-degeneracy of extremal points in multi-dimensional space
    ChongQing Cheng
    Min Zhou
    Science China Mathematics, 2015, 58 : 2255 - 2260
  • [22] Quasiconvexity and uniqueness of stationary points in the multi-dimensional calculus of variations
    Taheri, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (10) : 3101 - 3107
  • [23] Multi-dimensional Fourier Transforms, Lebesgue Points and Strong Summability
    Ferenc Weisz
    Mediterranean Journal of Mathematics, 2016, 13 : 3557 - 3587
  • [24] Grid file with approximation for multi-dimensional nearest neighbor search
    Dong, Zhiyuan
    Wang, Chih-Fang
    Su, Meng
    Hou, Wen-Chi
    WMSCI 2005: 9TH WORLD MULTI-CONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL 1, 2005, : 222 - 227
  • [25] Multi-dimensional Global Approximation Method based Improved MARS
    Luo, Xiaoling
    Xue, Heru
    ENGINEERING SOLUTIONS FOR MANUFACTURING PROCESSES, PTS 1-3, 2013, 655-657 : 1005 - 1008
  • [26] Approximation of the multi-dimensional Stokes system with embedded pressure discontinuities
    Gustavo Buscaglia
    Vitoriano Ruas
    Advances in Computational Mathematics, 2015, 41 : 599 - 634
  • [27] Approximation of the multi-dimensional Stokes system with embedded pressure discontinuities
    Buscaglia, Gustavo
    Ruas, Vitoriano
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2015, 41 (03) : 599 - 634
  • [28] A multi-dimensional metric for facilitating sustainable food choices in campus cafeterias
    Chen, David M.
    Tucker, Bronwen
    Badami, Madhav G.
    Ramankutty, Navin
    Rhemtulla, Jeanine M.
    JOURNAL OF CLEANER PRODUCTION, 2016, 135 : 1351 - 1362
  • [29] CMMD: Cross-Metric Multi-Dimensional Root Cause Analysis
    Yan, Shifu
    Shan, Caihua
    Yang, Wenyi
    Xu, Bixiong
    Li, Dongsheng
    Qiu, Lili
    Tong, Jie
    Zhang, Qi
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4310 - 4320
  • [30] Multi-dimensional smoothing transformations: Existence, regularity and stability of fixed points
    Bassetti, Federico
    Matthes, Daniel
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) : 154 - 198