Multi-dimensional metric approximation by primitive points

被引:0
|
作者
S. G. Dani
Michel Laurent
Arnaldo Nogueira
机构
[1] Indian Institute of Technology Bombay,Department of Mathematics
[2] Institut de Mathématiques de Marseille,undefined
[3] CNRS-UMR 7373,undefined
来源
Mathematische Zeitschrift | 2015年 / 279卷
关键词
Diophantine approximation; Metrical number theory; Primitive points; Ergodic theory; 11J20; 37A17;
D O I
暂无
中图分类号
学科分类号
摘要
We consider diophantine inequalities of the form |Θq+p-y|≤ψ(|q|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$| {\Theta }\mathbf{q}+ \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)$$\end{document}, with Θ∈Matn,m(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \in \mathrm{Mat}_{n,m}({\mathbb R})$$\end{document}, y∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{y}\in {\mathbb R}^n$$\end{document}, where m,n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\in {\mathbb N}$$\end{document}, and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is a function on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb N}$$\end{document} with positive real values, seeking integral solutions q∈Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{q}\in {\mathbb Z}^m$$\end{document} and p∈Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{p}\in {\mathbb Z}^n$$\end{document} for which the restriction of the vector (q,p)t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbf{q}, \mathbf{p})^t$$\end{document} to the components of a given partition π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} are primitive integer points. In this setting, we establish metrical statements in the style of the Khintchine–Groshev Theorem. Similar solutions are considered for the doubly metrical inequality |Θq+Φp-y|≤ψ(|q|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$| {\Theta }\mathbf{q}+\Phi \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)$$\end{document}, with Φ∈Matn,n(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \in \mathrm{Mat}_{n,n}({\mathbb R})$$\end{document} (other notations as before). The results involve the conditions that x↦xm-1ψ(x)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \mapsto x^{m-1}\psi (x)^n$$\end{document} be non-increasing, and that the components of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} have at least n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} elements each.
引用
收藏
页码:1081 / 1101
页数:20
相关论文
共 50 条
  • [31] Multi-dimensional dynamic facility location and fast computation at query points
    Abravaya, S.
    Berend, D.
    INFORMATION PROCESSING LETTERS, 2009, 109 (08) : 386 - 390
  • [32] Inferring Multi-Dimensional Ideal Points for US Supreme Court Justices
    Islam, Mohammad Raihanul
    Hossain, K. S. M. Tozammel
    Krishnan, Siddharth
    Ramakrishnan, Naren
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 4 - 12
  • [33] Dirac Mixture Trees for Fast Suboptimal Multi-Dimensional Density Approximation
    Klumpp, Vesa
    Hanebeck, Uwe D.
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2008, : 25 - 32
  • [34] Jacobi Collocation Approximation for Solving Multi-dimensional Volterra Integral Equations
    Abdelkawy, Mohamed A.
    Amin, Ahmed Z. M.
    Bhrawy, Ali H.
    Tenreiro Machado, Jose A.
    Lopes, Antonio M.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2017, 18 (05) : 411 - 425
  • [35] Simultaneous Approximation Terms for Multi-dimensional Summation-by-Parts Operators
    Fernandez, David C. Del Rey
    Hicken, Jason E.
    Zingg, David W.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 83 - 110
  • [36] NUMERICAL APPROXIMATION SCHEMES FOR MULTI-DIMENSIONAL WAVE EQUATIONS IN ASYMMETRIC SPACES
    Lescarret, Vincent
    Zuazua, Enrique
    MATHEMATICS OF COMPUTATION, 2015, 84 (291) : 119 - 152
  • [37] Simultaneous Approximation Terms for Multi-dimensional Summation-by-Parts Operators
    David C. Del Rey Fernández
    Jason E. Hicken
    David W. Zingg
    Journal of Scientific Computing, 2018, 75 : 83 - 110
  • [38] Multi-dimensional normal approximation of heavy-tailed moving averages
    Azmoodeh, Ehsan
    Ljungdahl, Mathias Morck
    Thaele, Christoph
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 145 : 308 - 334
  • [40] The optimum discrete approximation of multi-dimensional band-limited signals
    Kida, Y
    Kida, T
    MULTIMEDIA SYSTEMS AND APPLICATIONS VI, 2003, 5241 : 135 - 146