Multi-dimensional metric approximation by primitive points

被引:0
|
作者
S. G. Dani
Michel Laurent
Arnaldo Nogueira
机构
[1] Indian Institute of Technology Bombay,Department of Mathematics
[2] Institut de Mathématiques de Marseille,undefined
[3] CNRS-UMR 7373,undefined
来源
Mathematische Zeitschrift | 2015年 / 279卷
关键词
Diophantine approximation; Metrical number theory; Primitive points; Ergodic theory; 11J20; 37A17;
D O I
暂无
中图分类号
学科分类号
摘要
We consider diophantine inequalities of the form |Θq+p-y|≤ψ(|q|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$| {\Theta }\mathbf{q}+ \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)$$\end{document}, with Θ∈Matn,m(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta \in \mathrm{Mat}_{n,m}({\mathbb R})$$\end{document}, y∈Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{y}\in {\mathbb R}^n$$\end{document}, where m,n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m,n\in {\mathbb N}$$\end{document}, and ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi $$\end{document} is a function on N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb N}$$\end{document} with positive real values, seeking integral solutions q∈Zm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{q}\in {\mathbb Z}^m$$\end{document} and p∈Zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{p}\in {\mathbb Z}^n$$\end{document} for which the restriction of the vector (q,p)t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathbf{q}, \mathbf{p})^t$$\end{document} to the components of a given partition π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} are primitive integer points. In this setting, we establish metrical statements in the style of the Khintchine–Groshev Theorem. Similar solutions are considered for the doubly metrical inequality |Θq+Φp-y|≤ψ(|q|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$| {\Theta }\mathbf{q}+\Phi \mathbf{p}- \mathbf{y}|\le \psi (| \mathbf{q}|)$$\end{document}, with Φ∈Matn,n(R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi \in \mathrm{Mat}_{n,n}({\mathbb R})$$\end{document} (other notations as before). The results involve the conditions that x↦xm-1ψ(x)n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \mapsto x^{m-1}\psi (x)^n$$\end{document} be non-increasing, and that the components of π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi $$\end{document} have at least n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n+1$$\end{document} elements each.
引用
收藏
页码:1081 / 1101
页数:20
相关论文
共 50 条
  • [1] Multi-dimensional metric approximation by primitive points
    Dani, S. G.
    Laurent, Michel
    Nogueira, Arnaldo
    MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) : 1081 - 1101
  • [2] Smooth multi-dimensional approximation
    Kupenova, T.
    Computer Physics Communications, 1999, 121
  • [3] The theory of multi-dimensional polynomial approximation
    Dubiner, M
    JOURNAL D ANALYSE MATHEMATIQUE, 1995, 67 : 39 - 116
  • [4] Multi-dimensional classification via a metric approach
    Ma, Zhongchen
    Chen, Songcan
    NEUROCOMPUTING, 2018, 275 : 1121 - 1131
  • [5] Multi-dimensional continuous metric for mesh adaptation
    Alauzet, Frederic
    Loseille, Adrien
    Dervieux, Alain
    Frey, Pascal
    PROCEEDINGS OF THE 15TH INTERNATIONAL MESHING ROUNDTABLE, 2006, : 191 - +
  • [6] HETEROCLINIC POINTS OF MULTI-DIMENSIONAL DYNAMICAL SYSTEMS
    Cheban, David
    Duan, Jinqiao
    Gherco, Anatoly
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2003,
  • [7] APPROXIMATION AND RESTORATION OF MULTI-DIMENSIONAL FUNCTIONS AT MACROMODELING
    LOZOVSKY, YN
    PARASOCHKIN, VA
    TKACHENKO, VG
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1988, 31 (08): : 43 - 47
  • [8] Multi-dimensional function approximation and regression estimation
    Pérez-Cruz, F
    Camps-Valls, G
    Soria-Olivas, E
    Pérez-Ruixo, JJ
    Figueiras-Vidal, AR
    Artés-Rodríguez, A
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 757 - 762
  • [9] A multi-dimensional importance metric for contour tree simplification
    Jianlong Zhou
    Chun Xiao
    Masahiro Takatsuka
    Journal of Visualization, 2013, 16 : 341 - 349
  • [10] A multi-dimensional importance metric for contour tree simplification
    Zhou, Jianlong
    Xiao, Chun
    Takatsuka, Masahiro
    JOURNAL OF VISUALIZATION, 2013, 16 (04) : 341 - 349