Boundary Effects on the Structural Stability of Stationary Patterns in a Bistable Reaction-Diffusion System

被引:0
|
作者
G. G. Izús
J. Reyes de Rueda
C. H. Borzi
机构
[1] Universidad Nacional de Mar del Plata,Departamento de Física, Facultad de Ciencias Exactas y Naturales
[2] MONDITEC S.A.,undefined
[3] Olazabal 1927,undefined
[4] (,undefined
来源
关键词
Hot-spot model; reaction-diffusion; structural stability; non-equilibrium potential; albedo BCs;
D O I
暂无
中图分类号
学科分类号
摘要
We study a piecewise linear version of a one-component, two-dimensional bistable reaction-diffusion system subjected to partially reflecting boundary conditions, with the aim of analyzing the structural stability of its stationary patterns. Dirichlet and Neumann boundary conditions are included as limiting cases. We find a critical line in the space of the parameters which divides different dynamical behaviors. That critical line merges as the locus of the coalescence of metastable and unstable nonuniform structures.
引用
收藏
页码:103 / 117
页数:14
相关论文
共 50 条
  • [1] Boundary effects on the structural stability of stationary patterns in a bistable reaction-diffusion system
    Izus, GG
    de Rueda, JR
    Borzi, CH
    JOURNAL OF STATISTICAL PHYSICS, 1998, 90 (1-2) : 103 - 117
  • [2] GLOBAL STABILITY OF STATIONARY PATTERNS IN BISTABLE REACTION-DIFFUSION SYSTEMS
    IZUS, G
    DEZA, R
    RAMIREZ, O
    WIO, HS
    ZANETTE, DH
    BORZI, C
    PHYSICAL REVIEW E, 1995, 52 (01): : 129 - 136
  • [3] Stationary patterns in a discrete bistable reaction-diffusion system:mode analysis
    邹为
    占萌
    Chinese Physics B, 2010, 19 (10) : 178 - 187
  • [4] Stationary patterns in a discrete bistable reaction-diffusion system: mode analysis
    Zou Wei
    Zhan Meng
    CHINESE PHYSICS B, 2010, 19 (10)
  • [5] Stationary patterns in bistable reaction-diffusion cellular automata
    Spale, Daniel
    Stehlik, Petr
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2022, 19 (06) : 6072 - 6087
  • [6] Stationary structures in a discrete bistable reaction-diffusion system
    Munuzuri, AP
    Chua, LO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (12): : 2807 - 2825
  • [7] BIFURCATIONS IN A BISTABLE REACTION-DIFFUSION SYSTEM
    EBELING, W
    MALCHOW, H
    ANNALEN DER PHYSIK, 1979, 36 (02) : 121 - 134
  • [8] Stationary Patterns in a Two-Protein Reaction-Diffusion System
    Glock, Philipp
    Ramm, Beatrice
    Heermann, Tamara
    Kretschmer, Simon
    Schweizer, Jakob
    Muecksch, Jonas
    Alagoez, Goekberk
    Schwille, Petra
    ACS SYNTHETIC BIOLOGY, 2019, 8 (01): : 148 - 157
  • [9] Existence and stability of a stable stationary solution with a boundary layer for a system of reaction-diffusion equations with Neumann boundary conditions
    Nefedov, N. N.
    Deryugina, N. N.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2022, 212 (01) : 962 - 971
  • [10] STOCHASTIC BIFURCATIONS IN A BISTABLE REACTION-DIFFUSION SYSTEM WITH NEUMANN BOUNDARY-CONDITIONS
    MALCHOW, H
    EBELING, W
    FEISTEL, R
    SCHIMANSKYGEIER, L
    ANNALEN DER PHYSIK, 1983, 40 (2-3) : 151 - 160