Global existence of small solutions for the fourth-order nonlinear Schrödinger equation

被引:0
|
作者
Kazuki Aoki
Nakao Hayashi
Pavel I. Naumkin
机构
[1] Graduate School of Science,Department of Mathematics
[2] Osaka University,undefined
[3] Centro de Ciencias Matemáticas,undefined
[4] UNAM Campus Morelia,undefined
关键词
Fourth-order nonlinear Schrödinger equation; Global existence; Non gauge invariant; 35Q55; 35Q35; 35Q51;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the fourth-order nonlinear Schrödinger equation [graphic not available: see fulltext]where n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1,2$$\end{document}. We prove global existence of small solutions under the growth condition of fu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( u\right) $$\end{document} satisfying ∂ujfu≤Cup-j,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \partial _{u}^{j}f\left( u\right) \right| \le C\left| u\right| ^{p-j},$$\end{document} where p>1+4n,0≤j≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1+\frac{4}{n},0\le j\le 3$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Global existence of small solutions for the fourth-order nonlinear Schrodinger equation
    Aoki, Kazuki
    Hayashi, Nakao
    Naumkin, Pavel I.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (06):
  • [2] On Blowup Solutions to the Focusing Intercritical Nonlinear Fourth-Order Schrödinger Equation
    Van Duong Dinh
    Journal of Dynamics and Differential Equations, 2019, 31 : 1793 - 1823
  • [3] Scattering of solutions with group invariance for the fourth-order nonlinear Schrödinger equation
    Komada, Koichi
    Masaki, Satoshi
    NONLINEARITY, 2024, 37 (08)
  • [4] Global Existence of Small Solutions to a Relativistic Nonlinear Schrödinger Equation
    Anne de Bouard
    Nakao Hayashi
    Jean-Claude Saut
    Communications in Mathematical Physics, 1997, 189 : 73 - 105
  • [5] Global existence of odd solutions for the cubic fourth-order nonlinear Schrödinger equationsCubic fourth-order Schrödinger equationsN. Hayashi and P. I. Naumkin
    Nakao Hayashi
    Pavel I. Naumkin
    Nonlinear Differential Equations and Applications NoDEA, 2025, 32 (3)
  • [6] Factorization technique for the fourth-order nonlinear Schrödinger equation
    Nakao Hayashi
    Pavel I. Naumkin
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2343 - 2377
  • [7] Global existence of solutions for a fourth-order nonlinear Schrodinger equation
    Guo, Cuihua
    Cui, Shangbin
    APPLIED MATHEMATICS LETTERS, 2006, 19 (08) : 706 - 711
  • [8] The global solution of anisotropic fourth-order Schrödinger equation
    Hailing Su
    Cuihua Guo
    Advances in Difference Equations, 2019
  • [9] Soliton Solutions and Conservation Laws for an Inhomogeneous Fourth-Order Nonlinear Schrödinger Equation
    Pan Wang
    Feng-Hua Qi
    Jian-Rong Yang
    Computational Mathematics and Mathematical Physics, 2018, 58 : 1856 - 1864
  • [10] Solitary wave solutions for the fourth-order nonlinear Schrödinger equation with variables coefficients
    Boufas H.
    Daoui A.K.
    Triki H.
    Azzouzi F.
    Optik, 2023, 288