Global existence of small solutions for the fourth-order nonlinear Schrödinger equation

被引:0
|
作者
Kazuki Aoki
Nakao Hayashi
Pavel I. Naumkin
机构
[1] Graduate School of Science,Department of Mathematics
[2] Osaka University,undefined
[3] Centro de Ciencias Matemáticas,undefined
[4] UNAM Campus Morelia,undefined
关键词
Fourth-order nonlinear Schrödinger equation; Global existence; Non gauge invariant; 35Q55; 35Q35; 35Q51;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the fourth-order nonlinear Schrödinger equation [graphic not available: see fulltext]where n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1,2$$\end{document}. We prove global existence of small solutions under the growth condition of fu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( u\right) $$\end{document} satisfying ∂ujfu≤Cup-j,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \partial _{u}^{j}f\left( u\right) \right| \le C\left| u\right| ^{p-j},$$\end{document} where p>1+4n,0≤j≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1+\frac{4}{n},0\le j\le 3$$\end{document}.
引用
收藏
相关论文
共 50 条