Global existence of small solutions for the fourth-order nonlinear Schrödinger equation

被引:0
|
作者
Kazuki Aoki
Nakao Hayashi
Pavel I. Naumkin
机构
[1] Graduate School of Science,Department of Mathematics
[2] Osaka University,undefined
[3] Centro de Ciencias Matemáticas,undefined
[4] UNAM Campus Morelia,undefined
关键词
Fourth-order nonlinear Schrödinger equation; Global existence; Non gauge invariant; 35Q55; 35Q35; 35Q51;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Cauchy problem for the fourth-order nonlinear Schrödinger equation [graphic not available: see fulltext]where n=1,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=1,2$$\end{document}. We prove global existence of small solutions under the growth condition of fu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\left( u\right) $$\end{document} satisfying ∂ujfu≤Cup-j,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left| \partial _{u}^{j}f\left( u\right) \right| \le C\left| u\right| ^{p-j},$$\end{document} where p>1+4n,0≤j≤3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1+\frac{4}{n},0\le j\le 3$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] ALMOST SURE GLOBAL WELL-POSEDNESS FOR THE FOURTH-ORDER NONLINEAR SCHR(sic)DINGER EQUATION WITH LARGE INITIAL DATA
    Chen, Mingjuan
    Zhang, Shuai
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (05) : 2215 - 2233
  • [42] Global existence and scattering for the inhomogeneous nonlinear Schrödinger equation
    Aloui, Lassaad
    Tayachi, Slim
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (03)
  • [43] Global existence of a nonlinear Schrödinger equation with viscous damping
    Daisuke Hirata
    Journal of Evolution Equations, 2022, 22
  • [44] Instability of single- and double-periodic waves in the fourth-order nonlinear Schrödinger equation
    N. Sinthuja
    S. Rajasekar
    M. Senthilvelan
    Nonlinear Dynamics, 2023, 111 : 16497 - 16513
  • [45] Split-step multisymplectic integrator for fourth-order Schrödinger equation with cubic nonlinear term
    Kong, Linghua
    Cao, Ying
    Wang, Lan
    Wan, Long
    Jisuan Wuli/Chinese Journal of Computational Physics, 2011, 28 (05): : 730 - 736
  • [46] Jacobian elliptic wave trains in fourth-order dispersive nonlinear Schrödinger equation and the modulational instability
    Raju T.S.
    Triki H.
    Optik, 2024, 302
  • [47] Existence of Solutions to a Nonlinear Parabolic Equation of Fourth-Order in Variable Exponent Spaces
    Liang, Bo
    Peng, Xiting
    Qu, Chengyuan
    ENTROPY, 2016, 18 (11)
  • [48] Existence and blow-up of solutions of a fourth-order nonlinear diffusion equation
    Jin, Chunhua
    Yin, Jingxue
    Yin, Li
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) : 2313 - 2325
  • [49] Global existence and non-extinction of solutions to a fourth-order parabolic equation
    Cao, Yang
    Liu, Conghui
    APPLIED MATHEMATICS LETTERS, 2016, 61 : 20 - 25
  • [50] The existence of global attractor for a fourth-order parabolic equation
    Zhao, Xiaopeng
    Liu, Changchun
    APPLICABLE ANALYSIS, 2013, 92 (01) : 44 - 59