On 5-regular bipartitions with even parts distinct

被引:0
|
作者
M. S. Mahadeva Naika
T. Harishkumar
机构
[1] Bangalore University,Department of Mathematics, Central College Campus
来源
The Ramanujan Journal | 2019年 / 50卷
关键词
Partition identities; Theta-functions; Partition congruences; Regular bipartition; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
In 2010, Andrews, Michael D. Hirschhorn and James A. Sellers considered the function ped(n), the number of partition of an integer n with even parts distinct (the odd parts are unrestricted). They obtained infinite families of congruences in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). Let b(n) denote the number of 5-regular bipartitions of a positive integer n with even parts distinct (odd parts are unrestricted). In this paper, we establish many infinite families of congruences modulo powers of 2 for b(n). For example, ∑n=0∞b16·32α·52βn+14·32α·52β+1qn≡8f23f53(mod16),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{n=0}^{\infty } b\left(16\cdot 3^{2\alpha }\cdot 5^{2\beta }n+14\cdot 3^{2\alpha }\cdot 5^{2\beta }+1\right) q^n \equiv 8f_2^3f_5^3 \pmod {16} , \end{aligned}$$\end{document}where α,β≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta \ge 0$$\end{document}.
引用
收藏
页码:573 / 587
页数:14
相关论文
共 50 条
  • [41] On the Number of Even Parts in All Partitions of n into Distinct Parts
    Andrews, George E.
    Merca, Mircea
    ANNALS OF COMBINATORICS, 2020, 24 (01) : 47 - 54
  • [42] On the combinatorics of the number of even parts in all partitions with distinct parts
    Runqiao Li
    Andrew Y. Z. Wang
    The Ramanujan Journal, 2021, 56 : 721 - 727
  • [43] Arithmetic properties of 5-regular partition in three and five colours
    Riyajur Rahman
    Nipen Saikia
    The Journal of Analysis, 2022, 30 : 1427 - 1438
  • [44] Arithmetic properties of 5-regular partition in three and five colours
    Rahman, Riyajur
    Saikia, Nipen
    JOURNAL OF ANALYSIS, 2022, 30 (04): : 1427 - 1438
  • [45] Hamiltonian cycles and 1-factors in 5-regular graphs
    Van Cleemput, Nico
    Zamfirescu, Carol T.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2022, 154 : 239 - 261
  • [46] A partition statistic for partitions with even parts distinct
    Hao, Robert X. J.
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (04): : 1105 - 1123
  • [47] The number of partitions with distinct even parts revisited
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2023, 346 (07)
  • [48] A partition statistic for partitions with even parts distinct
    Robert X. J. Hao
    Monatshefte für Mathematik, 2023, 201 : 1105 - 1123
  • [49] Arithmetic properties of partitions with even parts distinct
    George E. Andrews
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 23 : 169 - 181
  • [50] Arithmetic properties of partitions with even parts distinct
    Andrews, George E.
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 23 (1-3): : 169 - 181