On 5-regular bipartitions with even parts distinct

被引:0
|
作者
M. S. Mahadeva Naika
T. Harishkumar
机构
[1] Bangalore University,Department of Mathematics, Central College Campus
来源
The Ramanujan Journal | 2019年 / 50卷
关键词
Partition identities; Theta-functions; Partition congruences; Regular bipartition; 11P83; 05A17;
D O I
暂无
中图分类号
学科分类号
摘要
In 2010, Andrews, Michael D. Hirschhorn and James A. Sellers considered the function ped(n), the number of partition of an integer n with even parts distinct (the odd parts are unrestricted). They obtained infinite families of congruences in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). Let b(n) denote the number of 5-regular bipartitions of a positive integer n with even parts distinct (odd parts are unrestricted). In this paper, we establish many infinite families of congruences modulo powers of 2 for b(n). For example, ∑n=0∞b16·32α·52βn+14·32α·52β+1qn≡8f23f53(mod16),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{n=0}^{\infty } b\left(16\cdot 3^{2\alpha }\cdot 5^{2\beta }n+14\cdot 3^{2\alpha }\cdot 5^{2\beta }+1\right) q^n \equiv 8f_2^3f_5^3 \pmod {16} , \end{aligned}$$\end{document}where α,β≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha , \beta \ge 0$$\end{document}.
引用
收藏
页码:573 / 587
页数:14
相关论文
共 50 条
  • [21] An upper bound for domination number of 5-regular graphs
    Xing, Hua-Ming
    Sun, Liang
    Chen, Xue-Gang
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2006, 56 (03) : 1049 - 1061
  • [22] RIEMANNIAN 5-REGULAR MANIFOLDS AS COSET MANIFOLDS
    ALAQEEL, A
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (06): : 710 - 714
  • [23] Recursive Generation of 5-Regular Planar Graphs
    Hasheminezhad, Mahdieh
    McKay, Brendan D.
    Reeves, Tristan
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2009, 5431 : 129 - +
  • [24] On the chromatic number of a random 5-regular graph
    Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Cataluny, Campus Nord - Ed. Omega, 240, Jordi Girona Salgado, 1-3, E-08034 Barcelona, Catalunya, Spain
    不详
    不详
    不详
    J. Graph Theory, 3 (157-191):
  • [25] Ricci-flat 5-regular graphs
    Lei, Heidi
    Bai, Shuliang
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (06) : 2511 - 2535
  • [26] On the Chromatic Number of a Random 5-Regular Graph
    Diaz, J.
    Kaporis, A. C.
    Kemkes, G. D.
    Kirousis, L. M.
    Perez, X.
    Wormald, N.
    JOURNAL OF GRAPH THEORY, 2009, 61 (03) : 157 - 191
  • [27] A NOTE ON THE CROSSING NUMBERS OF 5-REGULAR GRAPHS
    Ouyang, Zhangdong
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (04) : 1127 - 1140
  • [28] NEW CONGRUENCES AND DENSITY RESULTS FOR t-REGULAR PARTITIONS WITH DISTINCT EVEN PARTS
    Singh, Ajit
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (06) : 1715 - 1731
  • [29] ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS
    Hirschhorn, Michael D.
    Sellers, James A.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (01) : 58 - 63
  • [30] A Census of all 5-regular planar graphs with diameter 3
    Preen, James
    ARS COMBINATORIA, 2012, 106 : 129 - 135