Solutions of multi-component fractional symmetric systems

被引:0
|
作者
Mostafa Fazly
机构
[1] The University of Texas at San Antonio,Department of Mathematics
关键词
Nonlinear elliptic systems; Fractional Laplacian operator; Hamiltonian identity; Monotonicity formula; Symmetry of entire solutions; 35J60; 35J50; 35B35; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following elliptic system concerning the fractional Laplacian operator (-Δ)siui=Hi(u1,…,um)inRn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (- \Delta )^ {s_i} u_i = H_i ( u_1,\ldots ,u_m) \quad \text {in}\ \ \mathbb {R}^n, \end{aligned}$$\end{document}when 0<si<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_i<1$$\end{document}, ui:Rn→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_i: {\mathbb {R}}^n\rightarrow {\mathbb {R}}$$\end{document} and Hi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_i$$\end{document} belongs to C1,γ(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\gamma }(\mathbb {R}^m)$$\end{document} for γ>max(0,1-2minsi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > \max (0,1-2\min \left\{ s_i \right\} )$$\end{document} for 1≤i≤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i \le m$$\end{document}. The above system is called symmetric when the matrix H=(∂jHi(u1,…,um))i,j=1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}=(\partial _j H_i(u_1,\ldots ,u_m))_{i,j=1}^m$$\end{document} is symmetric. The notion of symmetric systems seems crucial to study this system with a general nonlinearity H=(Hi)i=1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=(H_i)_{i=1}^m$$\end{document}. We establish De Giorgi type results for stable and H-monotone solutions of symmetric systems in lower dimensions that is either n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} and 0<si<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_i<1$$\end{document} or n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} and 1/2≤min{si}<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2 \le \min \{s_i\}<1$$\end{document}. The case that n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} and at least one of parameters si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document} belongs to (0, 1 / 2) remains open as well as the case n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document}. Applying a geometric Poincaré inequality, we conclude that gradients of components of solutions are parallel in lower dimensions when the system is coupled. More precisely, we show that the angle between vectors ∇ui\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u_i$$\end{document} and ∇uj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u_j$$\end{document} is exactly arccos|∂jHi(u)|/∂jHi(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\arccos \left( {|\partial _j H_i(u)|}/{\partial _j H_i(u)}\right) $$\end{document}. In addition, we provide Hamiltonian identities, monotonicity formulae and Liouville theorems. Lastly, we apply some of our main results to a two-component nonlinear Schrödinger system, that is a particular case of the above system, and we prove Liouville theorems and monotonicity formulae.
引用
收藏
相关论文
共 50 条
  • [41] Interfacial creep in multi-component material systems
    Indranath Dutta
    Chanman Park
    Keith Peterson
    JOM, 2003, 55 : 38 - 43
  • [42] Kinetics of phase transformation in multi-component systems
    Inden, G.
    MATERIALS ISSUES FOR GENERATION IV SYSTEMS: STATUS, OPEN QUESTIONS AND CHALLENGES, 2008, : 113 - 140
  • [43] Simulation of multi-component charged particle systems
    Retzlaff, T
    Shaw, JG
    GRANULAR MATERIAL-BASED TECHNOLOGIES, 2003, 759 : 15 - 19
  • [44] Diffusion and phase transformations in multi-component systems
    Inden, G.
    Diffusion and Thermodynamics of Materials, 2007, 263 : 11 - 20
  • [45] LIGHT SCATTERING FROM MULTI-COMPONENT SYSTEMS
    OOI, T
    JOURNAL OF POLYMER SCIENCE, 1958, 28 (117): : 459 - 462
  • [46] Microwave drying of multi-component powder systems
    McLoughlin, CM
    McMinn, WAM
    Magee, TRA
    DRYING TECHNOLOGY, 2003, 21 (02) : 293 - 309
  • [47] Unavoidable disorder and entropy in multi-component systems
    Cormac Toher
    Corey Oses
    David Hicks
    Stefano Curtarolo
    npj Computational Materials, 5
  • [48] Diffusion of elements and vacancies in multi-component systems
    Fischer, F. D.
    Svoboda, J.
    PROGRESS IN MATERIALS SCIENCE, 2014, 60 : 338 - 367
  • [49] Remanufacturing of multi-component systems with product substitution
    Liu, Baolong
    Papier, Felix
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 301 (03) : 896 - 911
  • [50] Multi-component Systems as Detergent Builders.
    Berth, P.
    Berg, M.
    Hachmann, K.
    Tenside Detergents, 1983, 20 (06): : 276 - 282