Solutions of multi-component fractional symmetric systems

被引:0
|
作者
Mostafa Fazly
机构
[1] The University of Texas at San Antonio,Department of Mathematics
关键词
Nonlinear elliptic systems; Fractional Laplacian operator; Hamiltonian identity; Monotonicity formula; Symmetry of entire solutions; 35J60; 35J50; 35B35; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following elliptic system concerning the fractional Laplacian operator (-Δ)siui=Hi(u1,…,um)inRn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (- \Delta )^ {s_i} u_i = H_i ( u_1,\ldots ,u_m) \quad \text {in}\ \ \mathbb {R}^n, \end{aligned}$$\end{document}when 0<si<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_i<1$$\end{document}, ui:Rn→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_i: {\mathbb {R}}^n\rightarrow {\mathbb {R}}$$\end{document} and Hi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_i$$\end{document} belongs to C1,γ(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\gamma }(\mathbb {R}^m)$$\end{document} for γ>max(0,1-2minsi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > \max (0,1-2\min \left\{ s_i \right\} )$$\end{document} for 1≤i≤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i \le m$$\end{document}. The above system is called symmetric when the matrix H=(∂jHi(u1,…,um))i,j=1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}=(\partial _j H_i(u_1,\ldots ,u_m))_{i,j=1}^m$$\end{document} is symmetric. The notion of symmetric systems seems crucial to study this system with a general nonlinearity H=(Hi)i=1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=(H_i)_{i=1}^m$$\end{document}. We establish De Giorgi type results for stable and H-monotone solutions of symmetric systems in lower dimensions that is either n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} and 0<si<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_i<1$$\end{document} or n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} and 1/2≤min{si}<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2 \le \min \{s_i\}<1$$\end{document}. The case that n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} and at least one of parameters si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document} belongs to (0, 1 / 2) remains open as well as the case n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document}. Applying a geometric Poincaré inequality, we conclude that gradients of components of solutions are parallel in lower dimensions when the system is coupled. More precisely, we show that the angle between vectors ∇ui\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u_i$$\end{document} and ∇uj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u_j$$\end{document} is exactly arccos|∂jHi(u)|/∂jHi(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\arccos \left( {|\partial _j H_i(u)|}/{\partial _j H_i(u)}\right) $$\end{document}. In addition, we provide Hamiltonian identities, monotonicity formulae and Liouville theorems. Lastly, we apply some of our main results to a two-component nonlinear Schrödinger system, that is a particular case of the above system, and we prove Liouville theorems and monotonicity formulae.
引用
收藏
相关论文
共 50 条
  • [11] LIGHT SCATTERING IN MULTI-COMPONENT SYSTEMS
    STOCKMAYER, WH
    JOURNAL OF CHEMICAL PHYSICS, 1950, 18 (01): : 58 - 61
  • [12] Dissipative hydrodynamics for multi-component systems
    El, Andrej
    Bouras, Ioannis
    Wesp, Christian
    Xu, Zhe
    Greiner, Carsten
    EUROPEAN PHYSICAL JOURNAL A, 2012, 48 (11):
  • [13] MULTI-COMPONENT SYSTEMS AND STRUCTURES AND THEIR RELIABILITY
    BIRNBAUM, ZW
    ESARY, JD
    SAUNDERS, SC
    TECHNOMETRICS, 1961, 3 (01) : 55 - &
  • [14] Dissipative effects in multi-component systems
    El, Andrej
    Bouras, Ioannis
    Xu, Zhe
    Greiner, Carsten
    NUCLEAR PHYSICS A, 2013, 904 : 985C - 987C
  • [15] ON STUDY OF MULTI-COMPONENT ALLOY SYSTEMS
    PRYAKHIN.LI
    RUSSIAN METALLURGY-METALLY-USSR, 1964, (05): : 72 - &
  • [16] Fractional Gabor spectral estimation for multi-component signals
    Önen, E
    Akan, A
    PROCEEDINGS OF THE IEEE 12TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, 2004, : 514 - 517
  • [18] ON THE MODELING OF THE ADSORPTION OF MULTI-COMPONENT SYSTEMS
    WORCH, E
    ACTA HYDROCHIMICA ET HYDROBIOLOGICA, 1989, 17 (02): : 207 - 216
  • [19] Dissipative hydrodynamics for multi-component systems
    Andrej El
    Ioannis Bouras
    Christian Wesp
    Zhe Xu
    Carsten Greiner
    The European Physical Journal A, 2012, 48
  • [20] Rheology of multi-component polymer systems
    Aoki, Y
    NIHON REOROJI GAKKAISHI, 2004, 32 (05) : 235 - 243