Solutions of multi-component fractional symmetric systems

被引:0
|
作者
Mostafa Fazly
机构
[1] The University of Texas at San Antonio,Department of Mathematics
关键词
Nonlinear elliptic systems; Fractional Laplacian operator; Hamiltonian identity; Monotonicity formula; Symmetry of entire solutions; 35J60; 35J50; 35B35; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following elliptic system concerning the fractional Laplacian operator (-Δ)siui=Hi(u1,…,um)inRn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (- \Delta )^ {s_i} u_i = H_i ( u_1,\ldots ,u_m) \quad \text {in}\ \ \mathbb {R}^n, \end{aligned}$$\end{document}when 0<si<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_i<1$$\end{document}, ui:Rn→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_i: {\mathbb {R}}^n\rightarrow {\mathbb {R}}$$\end{document} and Hi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_i$$\end{document} belongs to C1,γ(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\gamma }(\mathbb {R}^m)$$\end{document} for γ>max(0,1-2minsi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > \max (0,1-2\min \left\{ s_i \right\} )$$\end{document} for 1≤i≤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i \le m$$\end{document}. The above system is called symmetric when the matrix H=(∂jHi(u1,…,um))i,j=1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}=(\partial _j H_i(u_1,\ldots ,u_m))_{i,j=1}^m$$\end{document} is symmetric. The notion of symmetric systems seems crucial to study this system with a general nonlinearity H=(Hi)i=1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=(H_i)_{i=1}^m$$\end{document}. We establish De Giorgi type results for stable and H-monotone solutions of symmetric systems in lower dimensions that is either n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} and 0<si<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_i<1$$\end{document} or n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} and 1/2≤min{si}<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2 \le \min \{s_i\}<1$$\end{document}. The case that n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} and at least one of parameters si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document} belongs to (0, 1 / 2) remains open as well as the case n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document}. Applying a geometric Poincaré inequality, we conclude that gradients of components of solutions are parallel in lower dimensions when the system is coupled. More precisely, we show that the angle between vectors ∇ui\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u_i$$\end{document} and ∇uj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u_j$$\end{document} is exactly arccos|∂jHi(u)|/∂jHi(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\arccos \left( {|\partial _j H_i(u)|}/{\partial _j H_i(u)}\right) $$\end{document}. In addition, we provide Hamiltonian identities, monotonicity formulae and Liouville theorems. Lastly, we apply some of our main results to a two-component nonlinear Schrödinger system, that is a particular case of the above system, and we prove Liouville theorems and monotonicity formulae.
引用
收藏
相关论文
共 50 条
  • [31] Solubility of multi-component biodiesel fuel systems
    Makareviciene, V
    Sendzikiene, E
    Janulis, P
    BIORESOURCE TECHNOLOGY, 2005, 96 (05) : 611 - 616
  • [32] On fault propagation in deterioration of multi-component systems
    Liang, Zhenglin
    Parlikad, Ajith Kumar
    Srinivasan, Rengarajan
    Rasmekomen, Nipat
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2017, 162 : 72 - 80
  • [33] Unavoidable disorder and entropy in multi-component systems
    Toher, Cormac
    Oses, Corey
    Hicks, David
    Curtarolo, Stefano
    NPJ COMPUTATIONAL MATERIALS, 2019, 5 (1)
  • [34] On the formation of disordered solid solutions in multi-component alloys
    Singh, Anil Kumar
    Subramaniam, Anandh
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 587 : 113 - 119
  • [35] Elastic properties of multi-component nickel solid solutions
    Chen, KY
    Zhao, LR
    Patnaik, PC
    Tse, JS
    Superalloys 2004, 2004, : 753 - 758
  • [36] Interfacial creep in multi-component material systems
    Dutta, I
    Peterson, KA
    Park, C
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2003, 55 (01): : 38 - 43
  • [37] Numerical analysis of interdiffusion in multi-component systems
    Filipek, R
    Szyszkiewicz, K
    DIFFUSION IN MATERIALS: DIMAT 2004, PTS 1 AND 2, 2005, 237-240 : 257 - 265
  • [38] SOLUBILITIES OF DURENE IN MULTI-COMPONENT HYDROCARBON SYSTEMS
    NAKAMURA, E
    KOGUCHI, K
    KOG KAGAKU ZASSHI, 1970, 73 (01): : 158 - &
  • [39] Composition Dependent Diffusivities in Multi-Component Systems
    Wierzba, Bartek
    Danielewski, Marek
    DIFFUSION IN SOLIDS AND LIQUIDS VI, PTS 1 AND 2, 2011, 312-315 : 127 - 131
  • [40] THE SURFACE-ENERGY OF MULTI-COMPONENT SYSTEMS
    MYERS, WD
    SWIATECKI, WJ
    WANG, CS
    NUCLEAR PHYSICS A, 1985, 436 (01) : 185 - 204