Solutions of multi-component fractional symmetric systems

被引:0
|
作者
Mostafa Fazly
机构
[1] The University of Texas at San Antonio,Department of Mathematics
关键词
Nonlinear elliptic systems; Fractional Laplacian operator; Hamiltonian identity; Monotonicity formula; Symmetry of entire solutions; 35J60; 35J50; 35B35; 35B45;
D O I
暂无
中图分类号
学科分类号
摘要
We study the following elliptic system concerning the fractional Laplacian operator (-Δ)siui=Hi(u1,…,um)inRn,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (- \Delta )^ {s_i} u_i = H_i ( u_1,\ldots ,u_m) \quad \text {in}\ \ \mathbb {R}^n, \end{aligned}$$\end{document}when 0<si<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_i<1$$\end{document}, ui:Rn→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_i: {\mathbb {R}}^n\rightarrow {\mathbb {R}}$$\end{document} and Hi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_i$$\end{document} belongs to C1,γ(Rm)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1,\gamma }(\mathbb {R}^m)$$\end{document} for γ>max(0,1-2minsi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma > \max (0,1-2\min \left\{ s_i \right\} )$$\end{document} for 1≤i≤m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\le i \le m$$\end{document}. The above system is called symmetric when the matrix H=(∂jHi(u1,…,um))i,j=1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}=(\partial _j H_i(u_1,\ldots ,u_m))_{i,j=1}^m$$\end{document} is symmetric. The notion of symmetric systems seems crucial to study this system with a general nonlinearity H=(Hi)i=1m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H=(H_i)_{i=1}^m$$\end{document}. We establish De Giorgi type results for stable and H-monotone solutions of symmetric systems in lower dimensions that is either n=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2$$\end{document} and 0<si<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0<s_i<1$$\end{document} or n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} and 1/2≤min{si}<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1/2 \le \min \{s_i\}<1$$\end{document}. The case that n=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=3$$\end{document} and at least one of parameters si\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s_i$$\end{document} belongs to (0, 1 / 2) remains open as well as the case n≥4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 4$$\end{document}. Applying a geometric Poincaré inequality, we conclude that gradients of components of solutions are parallel in lower dimensions when the system is coupled. More precisely, we show that the angle between vectors ∇ui\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u_i$$\end{document} and ∇uj\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla u_j$$\end{document} is exactly arccos|∂jHi(u)|/∂jHi(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\arccos \left( {|\partial _j H_i(u)|}/{\partial _j H_i(u)}\right) $$\end{document}. In addition, we provide Hamiltonian identities, monotonicity formulae and Liouville theorems. Lastly, we apply some of our main results to a two-component nonlinear Schrödinger system, that is a particular case of the above system, and we prove Liouville theorems and monotonicity formulae.
引用
收藏
相关论文
共 50 条
  • [1] Solutions of multi-component fractional symmetric systems
    Fazly, Mostafa
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (04):
  • [2] A kind of multi-component ren symmetric integrable systems
    Wang, Haifeng
    Li, Jinxiu
    Wu, Hongxia
    MODERN PHYSICS LETTERS A, 2025, 40 (05N06)
  • [3] GAS CHROMATOGRAPHIC ANALYSIS IN FRACTIONAL DISTILLATION OF MULTI-COMPONENT SYSTEMS
    KNIGHT, JA
    SICILIO, F
    HOUZE, N
    JOURNAL OF CHROMATOGRAPHY, 1961, 5 (02): : 179 - &
  • [4] Multi-component vortex solutions in symmetric coupled nonlinear Schrödinger equations
    Desyatnikov A.S.
    Pelinovsky D.E.
    Yang J.
    Journal of Mathematical Sciences, 2008, 151 (4) : 3091 - 3111
  • [5] Multi-component AKNS systems
    Gurses, Metin
    Pekcan, Asli
    WAVE MOTION, 2023, 117
  • [6] MULTI-COMPONENT STOCHASTIC SYSTEMS
    Minlos, R. A.
    INTERDISCIPLINARY STUDIES OF COMPLEX SYSTEMS, 2012, (01): : 81 - 84
  • [7] Multi-component diffusion in polymer solutions
    Verros, GD
    Malamataris, NA
    POLYMER, 2005, 46 (26) : 12626 - 12636
  • [8] Invariants of Multi-Component Ermakov Systems
    屈长征
    闫璐
    Communications in Theoretical Physics, 2010, 54 (09) : 393 - 396
  • [9] Creep in multi-component materials systems
    Dutta, I
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 2003, 55 (01): : 14 - 14
  • [10] The evolution of senescence in multi-component systems
    Laird, Robert A.
    Sherratt, Thomas N.
    BIOSYSTEMS, 2010, 99 (02) : 130 - 139