Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data

被引:0
|
作者
Coral Fustero-Torre
María José Jiménez-Santos
Santiago García-Martín
Carlos Carretero-Puche
Luis García-Jimeno
Vadym Ivanchuk
Tomás Di Domenico
Gonzalo Gómez-López
Fátima Al-Shahrour
机构
[1] Spanish National Cancer Research Centre (CNIO),Bioinformatics Unit
[2] Hospital 12 de Octubre,Laboratorio de Oncología Clínico
[3] Spanish National Cancer Research Centre (CNIO),Traslacional, Unidad de Investigación en tumores Digestivos, Instituto de Investigación I+12
来源
关键词
Single-cell RNA-seq; Intratumoural heterogeneity; Drug repositioning; Therapeutic clusters; Personalised therapy;
D O I
暂无
中图分类号
学科分类号
摘要
We present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular populations. Additionally, Beyondcell determines the therapeutic differences among cell populations and generates a prioritised sensitivity-based ranking in order to guide drug selection. We performed Beyondcell analysis in five single-cell datasets and demonstrated that TCs can be exploited to target malignant cells both in cancer cell lines and tumour patients. Beyondcell is available at: https://gitlab.com/bu_cnio/beyondcell.
引用
收藏
相关论文
共 50 条
  • [31] Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
    Zhu, Xun
    Ching, Travers
    Pan, Xinghua
    Weissman, Sherman M.
    Garmire, Lana
    PEERJ, 2017, 5
  • [32] Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data
    Moravec, Jiri C.
    Lanfear, Robert
    Spector, David L.
    Diermeier, Sarah D.
    Gavryushkin, Alex
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2023, 30 (04) : 518 - 537
  • [33] Locality Sensitive Imputation for Single-Cell RNA-Seq Data
    Moussa, Marmar
    Mandoiu, Ion I.
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 347 - 360
  • [34] Supervised Adversarial Alignment of Single-Cell RNA-seq Data
    Ge, Songwei
    Wang, Haohan
    Alavi, Amir
    Xing, Eric
    Bar-Joseph, Ziv
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2021, 28 (05) : 501 - 513
  • [35] Phylogenetic inference from single-cell RNA-seq data
    Xuan Liu
    Jason I. Griffiths
    Isaac Bishara
    Jiayi Liu
    Andrea H. Bild
    Jeffrey T. Chang
    Scientific Reports, 13
  • [36] Phylogenetic inference from single-cell RNA-seq data
    Liu, Xuan
    Griffiths, Jason I.
    Bishara, Isaac
    Liu, Jiayi
    Bild, Andrea H.
    Chang, Jeffrey T.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] PsiNorm: a scalable normalization for single-cell RNA-seq data
    Borella, Matteo
    Martello, Graziano
    Risso, Davide
    Romualdi, Chiara
    BIOINFORMATICS, 2022, 38 (01) : 164 - 172
  • [38] Deep Learning for Clustering Single-cell RNA-seq Data
    Zhu, Yuan
    Bai, Litai
    Ning, Zilin
    Fu, Wenfei
    Liu, Jie
    Jiang, Linfeng
    Fei, Shihuang
    Gong, Shiyun
    Lu, Lulu
    Deng, Minghua
    Yi, Ming
    CURRENT BIOINFORMATICS, 2024, 19 (03) : 193 - 210
  • [39] Tracking intratumoral heterogeneity in glioblastoma via regularized classification of single-cell RNA-Seq data
    Lopes, Marta B.
    Vinga, Susana
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [40] SCell: integrated analysis of single-cell RNA-seq data
    Diaz, Aaron
    Liu, Siyuan J.
    Sandoval, Carmen
    Pollen, Alex
    Nowakowski, Tom J.
    Lim, Daniel A.
    Kriegstein, Arnold
    BIOINFORMATICS, 2016, 32 (14) : 2219 - 2220