Beyondcell: targeting cancer therapeutic heterogeneity in single-cell RNA-seq data

被引:0
|
作者
Coral Fustero-Torre
María José Jiménez-Santos
Santiago García-Martín
Carlos Carretero-Puche
Luis García-Jimeno
Vadym Ivanchuk
Tomás Di Domenico
Gonzalo Gómez-López
Fátima Al-Shahrour
机构
[1] Spanish National Cancer Research Centre (CNIO),Bioinformatics Unit
[2] Hospital 12 de Octubre,Laboratorio de Oncología Clínico
[3] Spanish National Cancer Research Centre (CNIO),Traslacional, Unidad de Investigación en tumores Digestivos, Instituto de Investigación I+12
来源
关键词
Single-cell RNA-seq; Intratumoural heterogeneity; Drug repositioning; Therapeutic clusters; Personalised therapy;
D O I
暂无
中图分类号
学科分类号
摘要
We present Beyondcell, a computational methodology for identifying tumour cell subpopulations with distinct drug responses in single-cell RNA-seq data and proposing cancer-specific treatments. Our method calculates an enrichment score in a collection of drug signatures, delineating therapeutic clusters (TCs) within cellular populations. Additionally, Beyondcell determines the therapeutic differences among cell populations and generates a prioritised sensitivity-based ranking in order to guide drug selection. We performed Beyondcell analysis in five single-cell datasets and demonstrated that TCs can be exploited to target malignant cells both in cancer cell lines and tumour patients. Beyondcell is available at: https://gitlab.com/bu_cnio/beyondcell.
引用
收藏
相关论文
共 50 条
  • [21] scCancer: a package for automated processing of single-cell RNA-seq data in cancer
    Guo, Wenbo
    Wang, Dongfang
    Wang, Shicheng
    Shan, Yiran
    Liu, Changyi
    Gu, Jin
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (03)
  • [22] Tracking intratumoral heterogeneity in glioblastoma via regularized classification of single-cell RNA-Seq data
    Marta B. Lopes
    Susana Vinga
    BMC Bioinformatics, 21
  • [23] Tumor Heterogeneity and Molecular Characteristics of Glioblastoma Revealed by Single-Cell RNA-Seq Data Analysis
    Yesudhas, Dhanusha
    Dharshini, S. Akila Parvathy
    Taguchi, Y-H
    Gromiha, M. Michael
    GENES, 2022, 13 (03)
  • [24] Computational analysis of alternative polyadenylation from standard RNA-seq and single-cell RNA-seq data
    Gao, Yipeng
    Li, Wei
    MRNA 3' END PROCESSING AND METABOLISM, 2021, 655 : 225 - 243
  • [25] Evaluating imputation methods for single-cell RNA-seq data
    Yi Cheng
    Xiuli Ma
    Lang Yuan
    Zhaoguo Sun
    Pingzhang Wang
    BMC Bioinformatics, 24
  • [26] Analysis of Single-Cell RNA-seq Data by Clustering Approaches
    Zhu, Xiaoshu
    Li, Hong-Dong
    Guo, Lilu
    Wu, Fang-Xiang
    Wang, Jianxin
    CURRENT BIOINFORMATICS, 2019, 14 (04) : 314 - 322
  • [27] SCnorm: robust normalization of single-cell RNA-seq data
    Bacher, Rhonda
    Chu, Li-Fang
    Leng, Ning
    Gasch, Audrey P.
    Thomson, James A.
    Stewart, Ron M.
    Newton, Michael
    Kendziorski, Christina
    NATURE METHODS, 2017, 14 (06) : 584 - +
  • [28] Quantifying the clusterness and trajectoriness of single-cell RNA-seq data
    Lim, Hong Seo
    Qiu, Peng
    PLOS COMPUTATIONAL BIOLOGY, 2024, 20 (02)
  • [29] Evaluating imputation methods for single-cell RNA-seq data
    Cheng, Yi
    Ma, Xiuli
    Yuan, Lang
    Sun, Zhaoguo
    Wang, Pingzhang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [30] Challenges in unsupervised clustering of single-cell RNA-seq data
    Kiselev, Vladimir Yu
    Andrews, Tallulah S.
    Hemberg, Martin
    NATURE REVIEWS GENETICS, 2019, 20 (05) : 273 - 282