Circular Pentagons and Real Solutions of Painlevé VI Equations

被引:0
|
作者
Alexandre Eremenko
Andrei Gabrielov
机构
[1] Purdue University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study real solutions of a class of Painlevé VI equations. To each such solution we associate a geometric object, a one-parametric family of circular pentagons. We describe an algorithm that permits to compute the numbers of zeros, poles, 1-points and fixed points of the solution on the interval (1,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(1,+\infty)}$$\end{document} and their mutual position. The monodromy of the associated linear equation and parameters of the Painlevé VI equation are easily recovered from the family of pentagons.
引用
收藏
页码:51 / 95
页数:44
相关论文
共 50 条