Circular Pentagons and Real Solutions of Painlevé VI Equations

被引:0
|
作者
Alexandre Eremenko
Andrei Gabrielov
机构
[1] Purdue University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study real solutions of a class of Painlevé VI equations. To each such solution we associate a geometric object, a one-parametric family of circular pentagons. We describe an algorithm that permits to compute the numbers of zeros, poles, 1-points and fixed points of the solution on the interval (1,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(1,+\infty)}$$\end{document} and their mutual position. The monodromy of the associated linear equation and parameters of the Painlevé VI equation are easily recovered from the family of pentagons.
引用
收藏
页码:51 / 95
页数:44
相关论文
共 50 条
  • [31] Analytic Properties of Solutions to Equations in the Generalized Hierarchy of the Second Painlevé Equation
    V. I. Gromak
    Differential Equations, 2020, 56 : 993 - 1009
  • [32] Uniqueness of Meromorphic Functions Concerning Their Differences and Solutions of Difference PainlevÉ Equations
    Xiaoguang Qi
    Nan Li
    Lianzhong Yang
    Computational Methods and Function Theory, 2018, 18 : 567 - 582
  • [33] Painlevé integrability and superposition wave solutions of Whitham–Broer–Kaup equations
    Lulu Fan
    Taogetusang Bao
    Nonlinear Dynamics, 2022, 109 : 3091 - 3100
  • [34] Extended Symmetry of Higher Painlevé Equations of Even Periodicity and Their Rational Solutions
    Aratyn, Henrik
    Gomes, Jose Francisco
    Lobo, Gabriel Vieira
    Zimerman, Abraham Hirsz
    MATHEMATICS, 2024, 12 (23)
  • [35] Amalgamations of the Painlevé Equations
    N. A. Kudryashov
    Theoretical and Mathematical Physics, 2003, 137 : 1703 - 1715
  • [36] Value distribution of meromorphic solutions of certain difference Painlevé III equations
    Yunfei Du
    Minfeng Chen
    Zongsheng Gao
    Ming Zhao
    Advances in Difference Equations, 2018
  • [37] Painlevé analysis, group classification and exact solutions to the nonlinear wave equations
    Hanze Liu
    Cheng-Lin Bai
    Xiangpeng Xin
    The European Physical Journal B, 2020, 93
  • [38] Numerical solution of the Painlev, VI equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 180 - 193
  • [39] Numerical solution of the Painlevé VI equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2013, 53 : 180 - 193
  • [40] Some dynamical aspects of Painlevé VI
    Faculty of Mathematics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
    Algebraic Analysis of Different. Equ.: From Microlocal Analysis to Exponential Asymptotics Festschrift in Honor of Takahiro K, (143-156):