Circular Pentagons and Real Solutions of Painlevé VI Equations

被引:0
|
作者
Alexandre Eremenko
Andrei Gabrielov
机构
[1] Purdue University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study real solutions of a class of Painlevé VI equations. To each such solution we associate a geometric object, a one-parametric family of circular pentagons. We describe an algorithm that permits to compute the numbers of zeros, poles, 1-points and fixed points of the solution on the interval (1,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(1,+\infty)}$$\end{document} and their mutual position. The monodromy of the associated linear equation and parameters of the Painlevé VI equation are easily recovered from the family of pentagons.
引用
收藏
页码:51 / 95
页数:44
相关论文
共 50 条
  • [41] Classical conformal blocks and Painlevé VI
    Alexey Litvinov
    Sergei Lukyanov
    Nikita Nekrasov
    Alexander Zamolodchikov
    Journal of High Energy Physics, 2014
  • [42] Conformal field theory of Painlevé VI
    O. Gamayun
    N. Iorgov
    O. Lisovyy
    Journal of High Energy Physics, 2012
  • [43] Isomonodromic Deformations and Painlev, Equations
    Babich, Mikhail V.
    CONSTRUCTIVE APPROXIMATION, 2015, 41 (03) : 335 - 356
  • [44] Matrix Painlevé II equations
    V. E. Adler
    V. V. Sokolov
    Theoretical and Mathematical Physics, 2021, 207 : 560 - 571
  • [45] Special solutions of the first and second Painlevé equations and singularities of the monodromy data manifold
    V. Yu. Novokshenov
    Proceedings of the Steklov Institute of Mathematics, 2013, 281 : 105 - 117
  • [46] Special solutions of the first and second Painlev, equations and singularities of the monodromy data manifold
    Novokshenov, V. Yu.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 281 : S105 - S117
  • [47] Properties of solutions of two second-order differential equations with the Painlevé property
    V. V. Tsegel’nik
    Theoretical and Mathematical Physics, 2021, 206 : 315 - 320
  • [48] Symmetries of Quantum Lax Equations for the Painlevé Equations
    Hajime Nagoya
    Yasuhiko Yamada
    Annales Henri Poincaré, 2014, 15 : 313 - 344
  • [49] Folding transformations of the Painlevé equations
    Teruhisa Tsuda
    Kazuo Okamoto
    Hidetaka Sakai
    Mathematische Annalen, 2005, 331 : 713 - 738
  • [50] Symbolic Generation of Painlevé Equations
    Slavyanov S.Y.
    Stesik O.L.
    Journal of Mathematical Sciences, 2017, 224 (2) : 345 - 348