A Geometrical Description¶of the Discrete Painlevé VI and V Equations

被引:0
|
作者
A. Ramani
B. Grammaticos
Y. Ohta
机构
[1] CPT,
[2] Ecole Polytechnique,undefined
[3] CNRS,undefined
[4] UMR 7644,undefined
[5] 91128 Palaiseau,undefined
[6] France,undefined
[7] GMPIB,undefined
[8] Université Paris VII,undefined
[9] Tour 24-14,undefined
[10] 5e étage,undefined
[11] case 7021,undefined
[12] 75251 Paris,undefined
[13] France,undefined
[14] Department of Applied Mathematics,undefined
[15] Faculty of Engineering,undefined
[16] Hiroshima University,undefined
[17] 1-4-1 Kagamiyama,undefined
[18] Higashi-Hiroshima 739-8527,undefined
[19] Japan,undefined
来源
关键词
Bilinear Formalism; Weyl Group; Geometrical Approach; Versus Equation; Discrete Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a geometrical approach for the discrete Painlevé equations based on Weyl groups. The method relies on the bilinear formalism and assumes that the multidimensional τ-function lives on the weight lattice of the appropriate affine Weyl group. The equations for the τ-function, a system of nonautonomous Hirota–Miwa equations, govern the evolution along the independent variable and the parameters of the equation (the latter evolution induced by the Schlesinger transformations). In the present paper we analyse the case of the E(1)7 group. Using the geometrical description we derive the nonlinear discrete equations. We find that in the case of the E(1)7 group these are the “asymmetric”q-PVI and d-PV that were recently proposed.
引用
收藏
页码:315 / 329
页数:14
相关论文
共 50 条
  • [1] A geometrical description of the discrete Painleve VI and V equations
    Ramani, A
    Grammaticos, B
    Ohta, Y
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 217 (02) : 315 - 329
  • [2] On the identity of two q-discrete Painlevé equations and their geometrical derivation
    B Grammaticos
    A Ramani
    T Takenawa
    Advances in Difference Equations, 2006
  • [3] Discrete dressing transformations and painlevé equations
    Grammaticos, B.
    Papageorgiou, V.
    Ramani, A.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 235 (05): : 475 - 479
  • [4] Deformations of the Zolotarev polynomials and Painlevé VI equations
    Vladimir Dragović
    Vasilisa Shramchenko
    Letters in Mathematical Physics, 2021, 111
  • [5] Quantizing the Discrete Painlev, VI Equation: The Lax Formalism
    Hasegawa, Koji
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (08) : 865 - 879
  • [6] Contiguity relations for discrete and ultradiscrete Painlevé equations
    A Ramani
    B Grammaticos
    R Willox
    Journal of Nonlinear Mathematical Physics, 2008, 15 : 353 - 364
  • [7] Quantizing the Discrete Painlevé VI Equation: The Lax Formalism
    Koji Hasegawa
    Letters in Mathematical Physics, 2013, 103 : 865 - 879
  • [8] Parameterless discrete Painlevé equations and their Miura relations
    B. Grammaticos
    A. Ramani
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 141 - 149
  • [9] Hierarchies of q-discrete Painlevé equations
    Huda Alrashdi
    Nalini Joshi
    Dinh Thi Tran
    Journal of Nonlinear Mathematical Physics, 2020, 27 : 453 - 477
  • [10] On the relation between the continuous and discrete Painlevé equations
    P. A. Clarkson
    E. L. Mansfield
    H. N. Webster
    Theoretical and Mathematical Physics, 2000, 122 : 1 - 16