A Geometrical Description¶of the Discrete Painlevé VI and V Equations

被引:0
|
作者
A. Ramani
B. Grammaticos
Y. Ohta
机构
[1] CPT,
[2] Ecole Polytechnique,undefined
[3] CNRS,undefined
[4] UMR 7644,undefined
[5] 91128 Palaiseau,undefined
[6] France,undefined
[7] GMPIB,undefined
[8] Université Paris VII,undefined
[9] Tour 24-14,undefined
[10] 5e étage,undefined
[11] case 7021,undefined
[12] 75251 Paris,undefined
[13] France,undefined
[14] Department of Applied Mathematics,undefined
[15] Faculty of Engineering,undefined
[16] Hiroshima University,undefined
[17] 1-4-1 Kagamiyama,undefined
[18] Higashi-Hiroshima 739-8527,undefined
[19] Japan,undefined
来源
关键词
Bilinear Formalism; Weyl Group; Geometrical Approach; Versus Equation; Discrete Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We present a geometrical approach for the discrete Painlevé equations based on Weyl groups. The method relies on the bilinear formalism and assumes that the multidimensional τ-function lives on the weight lattice of the appropriate affine Weyl group. The equations for the τ-function, a system of nonautonomous Hirota–Miwa equations, govern the evolution along the independent variable and the parameters of the equation (the latter evolution induced by the Schlesinger transformations). In the present paper we analyse the case of the E(1)7 group. Using the geometrical description we derive the nonlinear discrete equations. We find that in the case of the E(1)7 group these are the “asymmetric”q-PVI and d-PV that were recently proposed.
引用
收藏
页码:315 / 329
页数:14
相关论文
共 50 条
  • [31] An ergodic study of Painlevé VI
    Katsunori Iwasaki
    Takato Uehara
    Mathematische Annalen, 2007, 338 : 295 - 345
  • [32] Families of Okamoto–Painlevé pairs and Painlevé equations
    Hitomi Terajima
    Annali di Matematica Pura ed Applicata, 2007, 186 : 99 - 144
  • [33] Parametric Painlevé equations
    Kitaev A.V.
    Journal of Mathematical Sciences, 2013, 192 (1) : 81 - 90
  • [34] Amalgamations of the Painlevé Equations
    N. A. Kudryashov
    Theoretical and Mathematical Physics, 2003, 137 : 1703 - 1715
  • [35] Numerical solution of the Painlev, VI equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 180 - 193
  • [36] Numerical solution of the Painlevé VI equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2013, 53 : 180 - 193
  • [37] Some dynamical aspects of Painlevé VI
    Faculty of Mathematics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
    Algebraic Analysis of Different. Equ.: From Microlocal Analysis to Exponential Asymptotics Festschrift in Honor of Takahiro K, (143-156):
  • [38] Classical conformal blocks and Painlevé VI
    Alexey Litvinov
    Sergei Lukyanov
    Nikita Nekrasov
    Alexander Zamolodchikov
    Journal of High Energy Physics, 2014
  • [39] Conformal field theory of Painlevé VI
    O. Gamayun
    N. Iorgov
    O. Lisovyy
    Journal of High Energy Physics, 2012
  • [40] Isomonodromic Deformations and Painlev, Equations
    Babich, Mikhail V.
    CONSTRUCTIVE APPROXIMATION, 2015, 41 (03) : 335 - 356