Parametric Painlevé equations

被引:0
|
作者
Kitaev A.V. [1 ]
机构
[1] St.Petersburg Department of the Steklov Mathematical Institute, St.Petersburg
关键词
General Solution; Short Pulse; Analytic Property; Parametric Form; Similarity Solution;
D O I
10.1007/s10958-013-1375-9
中图分类号
学科分类号
摘要
Parametric Painlevé equations are the ODEs for which general solutions can be represented in parametric form in terms of Painlevé functions. Most of these ODEs do not possess the Painlevé property. Considering similarity solutions of the Short Pulse Equation and its decoupled generalization, we derive a nontrivial example of a parametric Painlevé equation related to the third Painlevé equation. We also discuss some analytic properties of this equation describing the structure of movable singularities. Bibliography: 14 titles © 2013 Springer Science+Business Media New York.
引用
收藏
页码:81 / 90
页数:9
相关论文
共 50 条
  • [1] Families of Okamoto–Painlevé pairs and Painlevé equations
    Hitomi Terajima
    Annali di Matematica Pura ed Applicata, 2007, 186 : 99 - 144
  • [2] Amalgamations of the Painlevé Equations
    N. A. Kudryashov
    Theoretical and Mathematical Physics, 2003, 137 : 1703 - 1715
  • [3] Isomonodromic Deformations and Painlev, Equations
    Babich, Mikhail V.
    CONSTRUCTIVE APPROXIMATION, 2015, 41 (03) : 335 - 356
  • [4] Matrix Painlevé II equations
    V. E. Adler
    V. V. Sokolov
    Theoretical and Mathematical Physics, 2021, 207 : 560 - 571
  • [5] Symmetries of Quantum Lax Equations for the Painlevé Equations
    Hajime Nagoya
    Yasuhiko Yamada
    Annales Henri Poincaré, 2014, 15 : 313 - 344
  • [6] Folding transformations of the Painlevé equations
    Teruhisa Tsuda
    Kazuo Okamoto
    Hidetaka Sakai
    Mathematische Annalen, 2005, 331 : 713 - 738
  • [7] Symbolic Generation of Painlevé Equations
    Slavyanov S.Y.
    Stesik O.L.
    Journal of Mathematical Sciences, 2017, 224 (2) : 345 - 348
  • [8] Isomonodromic Deformations and Painlevé Equations
    Mikhail V. Babich
    Constructive Approximation, 2015, 41 : 335 - 356
  • [9] On the first integrals of the Painlevé classes of equations
    Mogahid M. A. Ahmed
    Bader Alqurashi
    Abdul Hamid Kara
    Arabian Journal of Mathematics, 2023, 12 : 565 - 571
  • [10] Analysis of modified Painlevé–Ince equations
    K. S. Govinder
    Ricerche di Matematica, 2022, 71 : 17 - 27