Quantizing the Discrete Painlev, VI Equation: The Lax Formalism

被引:2
|
作者
Hasegawa, Koji [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Weyl groups; discrete Painleve equations; quantum integrable systems; QUANTUM DILOGARITHM; TRANSFORMATIONS; SYSTEMS; MODELS;
D O I
10.1007/s11005-013-0620-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A discretization of Painlev, VI equation was obtained by Jimbo and Sakai (Lett Math Phys 38:145-154, 1996). There are two ways to quantize it: (1) use the affine Weyl group symmetry (of ) (Hasegawa in Adv Stud Pure Math 61:275-288, 2011), (2) Lax formalism, i.e. monodromy preserving point of view. It turns out that the second approach is also successful and gives the same quantization as in the first approach.
引用
收藏
页码:865 / 879
页数:15
相关论文
共 50 条
  • [1] Quantizing the Discrete Painlevé VI Equation: The Lax Formalism
    Koji Hasegawa
    Letters in Mathematical Physics, 2013, 103 : 865 - 879
  • [2] On a novel q-discrete analogue of the Painlevé VI equation
    Grammaticos, B.
    Ramani, A.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 257 (5-6): : 288 - 292
  • [3] On the Lax pairs of the continuous and discrete sixth Painlevé equations
    Runliang Lin
    Robert Conte
    Micheline Musette
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 107 - 118
  • [4] Numerical solution of the Painlev, VI equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 180 - 193
  • [5] Quantizing the Backlund transformations of Painleve equations and the quantum discrete Painleve VI equation
    Hasegawa, Koji
    EXPLORING NEW STRUCTURES AND NATURAL CONSTRUCTIONS IN MATHEMATICAL PHYSICS, 2011, 61 : 275 - 288
  • [6] Numerical solution of the Painlevé VI equation
    A. A. Abramov
    L. F. Yukhno
    Computational Mathematics and Mathematical Physics, 2013, 53 : 180 - 193
  • [7] Rational Solutions for the Discrete Painlevé Ⅱ Equation
    赵玲玲
    商朋见
    数学季刊, 1999, (03) : 24 - 29
  • [8] Quantum Painlevé Second Lax Pair and Quantum (Matrix) Analogues of Classical Painlevé II Equation
    Waseem, Muhammad
    Mahmood, Irfan
    Sohail, Hira
    Hussain, Ejaz
    Elansary, Hosam O.
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (05)
  • [9] A Lax Formalism for the Elliptic Difference Painleve Equation
    Yamada, Yasuhiko
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [10] Painlevé VI, Rigid Tops and Reflection Equation
    A. M. Levin
    M. A. Olshanetsky
    A. V. Zotov
    Communications in Mathematical Physics, 2006, 268 : 67 - 103