On a novel q-discrete analogue of the Painlevé VI equation

被引:0
|
作者
Grammaticos, B. [1 ]
Ramani, A. [2 ]
机构
[1] GMPIB, Université Paris VII, 5eétage, case 7021, 75251 Paris, France
[2] CPT, Ecole Polytechnique, UMR 7644, 91128 Palaiseau, France
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:288 / 292
相关论文
共 50 条
  • [1] On a novel q-discrete analogue of the Painleve VI equation
    Grammaticos, B
    Ramani, A
    PHYSICS LETTERS A, 1999, 257 (5-6) : 288 - 292
  • [2] Hierarchies of q-discrete Painlevé equations
    Huda Alrashdi
    Nalini Joshi
    Dinh Thi Tran
    Journal of Nonlinear Mathematical Physics, 2020, 27 : 453 - 477
  • [3] On the identity of two q-discrete Painlevé equations and their geometrical derivation
    B Grammaticos
    A Ramani
    T Takenawa
    Advances in Difference Equations, 2006
  • [4] Q-DISCRETE TODA MOLECULE EQUATION
    KAJIWARA, K
    OHTA, Y
    SATSUMA, J
    PHYSICS LETTERS A, 1993, 180 (03) : 249 - 256
  • [5] Approximate Solutions of the Q-discrete Burgers Equation
    Zeng, Yu-Xiang
    Zeng, Yi
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2013, 7 (04): : 241 - 248
  • [6] Quantizing the Discrete Painlev, VI Equation: The Lax Formalism
    Hasegawa, Koji
    LETTERS IN MATHEMATICAL PHYSICS, 2013, 103 (08) : 865 - 879
  • [7] Quantizing the Discrete Painlevé VI Equation: The Lax Formalism
    Koji Hasegawa
    Letters in Mathematical Physics, 2013, 103 : 865 - 879
  • [8] Hierarchies of q-discrete Painleve equations
    Alrashdi, Huda
    Joshi, Nalini
    Tran Dinh Thi
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2020, 27 (03) : 453 - 477
  • [9] q-Painlevé VI Equation Arising from q-UC Hierarchy
    Teruhisa Tsuda
    Tetsu Masuda
    Communications in Mathematical Physics, 2006, 262 : 595 - 609
  • [10] Numerical solution of the Painlev, VI equation
    Abramov, A. A.
    Yukhno, L. F.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (02) : 180 - 193