Quantizing the Discrete Painlev, VI Equation: The Lax Formalism

被引:2
|
作者
Hasegawa, Koji [1 ]
机构
[1] Tohoku Univ, Math Inst, Sendai, Miyagi 9808578, Japan
关键词
Weyl groups; discrete Painleve equations; quantum integrable systems; QUANTUM DILOGARITHM; TRANSFORMATIONS; SYSTEMS; MODELS;
D O I
10.1007/s11005-013-0620-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A discretization of Painlev, VI equation was obtained by Jimbo and Sakai (Lett Math Phys 38:145-154, 1996). There are two ways to quantize it: (1) use the affine Weyl group symmetry (of ) (Hasegawa in Adv Stud Pure Math 61:275-288, 2011), (2) Lax formalism, i.e. monodromy preserving point of view. It turns out that the second approach is also successful and gives the same quantization as in the first approach.
引用
收藏
页码:865 / 879
页数:15
相关论文
共 50 条
  • [31] Lax Pairs, Painlevé Properties and Exact Solutions of the Calogero Korteweg-de Vries Equation and a New (2 + 1)-Dimensional Equation
    Song-Ju Yu
    Kouichi Toda
    Journal of Nonlinear Mathematical Physics, 2000, 7 : 1 - 13
  • [32] An Area-Preserving Action of the Modular Group on Cubic Surfaces and the Painlevé VI Equation
    Katsunori Iwasaki
    Communications in Mathematical Physics, 2003, 242 : 185 - 219
  • [33] q-Painlevé VI Equation Arising from q-UC Hierarchy
    Teruhisa Tsuda
    Tetsu Masuda
    Communications in Mathematical Physics, 2006, 262 : 595 - 609
  • [34] Quantizing the KdV Equation
    A. K. Pogrebkov
    Theoretical and Mathematical Physics, 2001, 129 : 1586 - 1595
  • [35] Quantizing the KdV equation
    Pogrebkov, AK
    THEORETICAL AND MATHEMATICAL PHYSICS, 2001, 129 (02) : 1586 - 1595
  • [36] Some dynamical aspects of Painlevé VI
    Faculty of Mathematics, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
    Algebraic Analysis of Different. Equ.: From Microlocal Analysis to Exponential Asymptotics Festschrift in Honor of Takahiro K, (143-156):
  • [37] Classical conformal blocks and Painlevé VI
    Alexey Litvinov
    Sergei Lukyanov
    Nikita Nekrasov
    Alexander Zamolodchikov
    Journal of High Energy Physics, 2014
  • [38] Conformal field theory of Painlevé VI
    O. Gamayun
    N. Iorgov
    O. Lisovyy
    Journal of High Energy Physics, 2012
  • [39] Dynamics of the Painlevé-Ince Equation
    Jaume Llibre
    Results in Mathematics, 2023, 78
  • [40] On the Transformations of the Sixth Painlevé Equation
    Valery I Gromak
    Galina Filipuk
    Journal of Nonlinear Mathematical Physics, 2003, 10 (Suppl 2) : 57 - 68