Heavy quark potential in a static and strong homogeneous magnetic field

被引:0
|
作者
Mujeeb Hasan
Bhaswar Chatterjee
Binoy Krishna Patra
机构
[1] Indian Institute of Technology Roorkee,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB>>T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB>>T^2$$\end{document} and eB>>m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB>>m^2$$\end{document}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{Q}$$\end{document}) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind QQ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\bar{Q}$$\end{document} together. For example, the J/ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J/\psi $$\end{document} is dissociated at eB∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB \sim $$\end{document} 10 mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\pi ^2$$\end{document} and Υ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Upsilon $$\end{document} is dissociated at eB∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB \sim $$\end{document} 100 mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\pi ^2$$\end{document} whereas its excited states, ψ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi ^\prime $$\end{document} and Υ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Upsilon ^\prime $$\end{document} are dissociated at smaller magnetic field eB=mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB= m_\pi ^2$$\end{document}, 13mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13 m_\pi ^2$$\end{document}, respectively.
引用
收藏
相关论文
共 50 条
  • [41] Biological effects on cells in strong static magnetic field
    Tian Xiao-Fei
    Zhang Xin
    ACTA PHYSICA SINICA, 2018, 67 (14) : 148701
  • [42] Progress in research on solidification in a strong static magnetic field
    Ren, Weili
    Ren, Zhongming
    Deng, Kang
    Zhong, Yunbo
    Lei, Zuosheng
    Li, Xi
    STEEL RESEARCH INTERNATIONAL, 2007, 78 (05) : 373 - 378
  • [43] Firefly flashing under strong static magnetic field
    Barua, Anurup Gohain
    Iwasaka, Masakazu
    Miyashita, Yuito
    Kurita, Satoru
    Owada, Norio
    PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2002, 1 (12) : 345 - 350
  • [44] Quark stars with strong magnetic fields: considering different magnetic field geometries
    Wei Wei
    Xi-Wei Liu
    Xiao-Ping Zheng
    Research in Astronomy and Astrophysics, 2017, 17 (10) : 29 - 34
  • [45] Quark stars with strong magnetic fields: considering different magnetic field geometries
    Wei, Wei
    Liu, Xi-Wei
    Zheng, Xiao-Ping
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2017, 17 (10)
  • [46] Bottomonium sequential suppression and strong heavy-quark potential in heavy-ion collisions
    Wen, Liuyuan
    Chen, Baoyi
    PHYSICS LETTERS B, 2023, 839
  • [47] Heavy-Quark Diffusion Dynamics in Quark-Gluon Plasma under Strong Magnetic Fields
    Hattori, Koichi
    Fukushima, Kenji
    Yee, Ho-Ung
    Yin, Yi
    NUCLEAR AND PARTICLE PHYSICS PROCEEDINGS, 2017, 289 : 273 - 276
  • [48] STATIC HEAVY-QUARK POTENTIAL CALCULATED IN THE CLASSICAL APPROXIMATION TO DUAL QCD
    BAKER, M
    BALL, JS
    ZACHARIASEN, F
    PHYSICAL REVIEW D, 1991, 44 (10): : 3328 - 3335
  • [49] Anisotropic heavy quark potential in strongly-coupled N=4 SYM theory in a magnetic field
    Rougemont, R.
    Critelli, R.
    Noronha, J.
    PHYSICAL REVIEW D, 2015, 91 (06):
  • [50] MAGNETIC-PROPERTIES OF INTERACTING RELATIVISTIC QUARK GAS IN A HOMOGENEOUS MAGNETIC-FIELD
    SINGH, SP
    HASAN, M
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 1988, 26 (01) : 12 - 16