Heavy quark potential in a static and strong homogeneous magnetic field

被引:0
|
作者
Mujeeb Hasan
Bhaswar Chatterjee
Binoy Krishna Patra
机构
[1] Indian Institute of Technology Roorkee,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB>>T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB>>T^2$$\end{document} and eB>>m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB>>m^2$$\end{document}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{Q}$$\end{document}) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind QQ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\bar{Q}$$\end{document} together. For example, the J/ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J/\psi $$\end{document} is dissociated at eB∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB \sim $$\end{document} 10 mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\pi ^2$$\end{document} and Υ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Upsilon $$\end{document} is dissociated at eB∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB \sim $$\end{document} 100 mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\pi ^2$$\end{document} whereas its excited states, ψ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi ^\prime $$\end{document} and Υ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Upsilon ^\prime $$\end{document} are dissociated at smaller magnetic field eB=mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB= m_\pi ^2$$\end{document}, 13mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13 m_\pi ^2$$\end{document}, respectively.
引用
收藏
相关论文
共 50 条
  • [21] Massive hybrid quark stars with strong magnetic field
    Sotani, Hajime
    Tatsumi, Toshitaka
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 447 (04) : 3155 - 3161
  • [22] STRANGE QUARK MATTER IN A STRONG MAGNETIC-FIELD
    CHAKRABARTY, S
    ASTROPHYSICS AND SPACE SCIENCE, 1994, 213 (01) : 121 - 129
  • [23] Strange Quark Matter and Strangelets in a Strong Magnetic Field
    丁猛
    温新建
    刘福虎
    李保春
    Communications in Theoretical Physics, 2014, 62 (12) : 859 - 863
  • [24] The effect of strong static magnetic field on lymphocytes
    Aldinucci, C
    Garcia, JB
    Palmi, M
    Sgaragli, G
    Benocci, A
    Meini, A
    Pessina, F
    Rossi, C
    Bonechi, C
    Pessina, GP
    BIOELECTROMAGNETICS, 2003, 24 (02) : 109 - 117
  • [25] PHONONS IN A STRONG STATIC MAGNETIC-FIELD
    HOLZ, A
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B, 1972, B 9 (01): : 83 - &
  • [26] Holographic estimate of heavy quark diffusion in a magnetic field
    Dudal, David
    Mertens, Thomas G.
    PHYSICAL REVIEW D, 2018, 97 (05)
  • [27] CULTURE OF MACROPHAGES UNDER HOMOGENEOUS STATIC MAGNETIC FIELD
    VALENTIN.M
    FERRARES.RW
    VAZQUEZ, T
    EXPERIENTIA, 1966, 22 (05): : 312 - &
  • [28] INSTABILITY OF HOMOGENEOUS ATTENUATED PLASMA IN A STRONG MAGNETIC FIELD
    RUDAKOV, LI
    SAGDEEV, RZ
    DOKLADY AKADEMII NAUK SSSR, 1961, 138 (03): : 581 - &
  • [29] Heavy quarkonium production in a strong magnetic field
    Machado, C. S.
    Navarra, F. S.
    de Oliveira, E. G.
    Noronha, J.
    Strickland, M.
    PHYSICAL REVIEW D, 2013, 88 (03):
  • [30] Potential and field of a homogeneous magnetic spheroid of arbitrary direction in a homogeneous magnetic field in Cartesian coordinates
    Kraiger, Markus
    Schnizer, Bernhard
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2013, 32 (03) : 936 - 960