Heavy quark potential in a static and strong homogeneous magnetic field

被引:0
|
作者
Mujeeb Hasan
Bhaswar Chatterjee
Binoy Krishna Patra
机构
[1] Indian Institute of Technology Roorkee,Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We have investigated the properties of quarkonia in a thermal QCD medium in the background of strong magnetic field. For that purpose, we employ the Schwinger proper-time quark propagator in the lowest Landau level to calculate the one-loop gluon self-energy, which in the sequel gives the effective gluon propagator. As an artifact of strong magnetic field approximation (eB>>T2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB>>T^2$$\end{document} and eB>>m2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB>>m^2$$\end{document}), the Debye mass for massless flavors is found to depend only on the magnetic field which is the dominant scale in comparison to the scales prevalent in the thermal medium. However, for physical quark masses, it depends on both magnetic field and temperature in a low temperature and high magnetic field but the temperature dependence is very meager and becomes independent of the temperature beyond a certain temperature and magnetic field. With the above mentioned ingredients, the potential between heavy quark (Q) and anti-quark (Q¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\bar{Q}$$\end{document}) is obtained in a hot QCD medium in the presence of a strong magnetic field by correcting both short- and long-range components of the potential in the real-time formalism. It is found that the long-range part of the quarkonium potential is affected much more by magnetic field as compared to the short-range part. This observation facilitates us to estimate the magnetic field beyond which the potential will be too weak to bind QQ¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q\bar{Q}$$\end{document} together. For example, the J/ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J/\psi $$\end{document} is dissociated at eB∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB \sim $$\end{document} 10 mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\pi ^2$$\end{document} and Υ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Upsilon $$\end{document} is dissociated at eB∼\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB \sim $$\end{document} 100 mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m_\pi ^2$$\end{document} whereas its excited states, ψ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi ^\prime $$\end{document} and Υ′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Upsilon ^\prime $$\end{document} are dissociated at smaller magnetic field eB=mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$eB= m_\pi ^2$$\end{document}, 13mπ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$13 m_\pi ^2$$\end{document}, respectively.
引用
收藏
相关论文
共 50 条
  • [31] Quasiparticle model of the quark/gluon plasma in a strong magnetic field
    Gibilisco, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (14): : 2473 - 2491
  • [32] Strange Quark Matter and Strange lets in a Strong Magnetic Field
    Ding Meng
    Wen Xin-Jian
    Liu Fu-Hu
    Li Bao-Chun
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (06) : 859 - 863
  • [33] Rayleigh bubble in quark matter under a strong magnetic field
    Kerbikov, B. O.
    Lukashov, M. S.
    PHYSICAL REVIEW D, 2020, 101 (09)
  • [34] Dynamical quark mass generation in a strong external magnetic field
    Mueller, Niklas
    Bonnet, Jacqueline A.
    Fischer, Christian S.
    PHYSICAL REVIEW D, 2014, 89 (09):
  • [35] ORIENTATION OF ERYTHROCYTES IN A STRONG STATIC MAGNETIC-FIELD
    HIGASHI, T
    YAMAGISHI, A
    TAKEUCHI, T
    KAWAGUCHI, N
    SAGAWA, S
    ONISHI, S
    DATE, M
    BLOOD, 1993, 82 (04) : 1328 - 1334
  • [36] Firefly flashing under strong static magnetic field
    Anurup Gohain Barua
    Masakazu Iwasaka
    Yuito Miyashita
    Satoru Kurita
    Norio Owada
    Photochemical & Photobiological Sciences, 2012, 11 : 345 - 350
  • [37] KINETIC EQUATION FOR A PLASMA IN A STRONG STATIC MAGNETIC FIELD
    SUNDARES.MK
    CANADIAN JOURNAL OF PHYSICS, 1966, 44 (01) : 247 - &
  • [38] Orientation of Magnetized MnBi in a Strong Static Magnetic Field
    Tianxiang Zheng
    Yunbo Zhong
    Licheng Dong
    Bangfei Zhou
    Zhongming Ren
    Francois Debray
    Eric Beaugnon
    Metallurgical and Materials Transactions A, 2018, 49 : 1981 - 1985
  • [39] Orientation of Magnetized MnBi in a Strong Static Magnetic Field
    Zheng, Tianxiang
    Zhong, Yunbo
    Dong, Licheng
    Zhou, Bangfei
    Ren, Zhongming
    Debray, Francois
    Beaugnon, Eric
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (06): : 1981 - 1985
  • [40] KINETIC EQUATION OF A PLASMA IN A STRONG STATIC MAGNETIC FIELD
    SUNDARESAN, MK
    WU, TY
    CANADIAN JOURNAL OF PHYSICS, 1962, 40 (11) : 1537 - &